Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.82P

Hot exhaust gases are used in a shell-and-tubeexchanger to heat 2.5 kg/s of water from 35 to 85°C. The gases, assumed to have the properties ofair, enter at 200 ° C and leave at 93 ° C . The overallheat transfer coefficient is 180 W/m 2 K . Using theeffectiveness—NTU method, calculate the area of theheat exchanger.

Blurred answer
Students have asked these similar questions
Steam with 80% quality is being used to heat a 40% total solids tomato purée as it flows through a steam injection heater at a rate of 400 kg/h. The steam is generated at 169.06 kPa and is fl owing to the heater at a rate of 50 kg/h. Assume that the heat exchanger effi ciency is 85%. If the specifi c heat of the product is 3.2 kJ/(kg K), determine the temperature of the product leaving the heater when the initial temperature is 50C. Determine the total solids content of the product after heating. Assume the specific heat of the purée is not infl uenced by the heating process.
Question 3 An industrial company recently installed a hot water system operates by hot geothermal water. The geothermal water (Cp = 4250 J/kg.ºC) at 95°C is to be used to heat fresh water (Cp = 4180 J/kg.°C) at 12°C at a rate of 1.2 kg/s in a double-pipe counter-flow heat exchanger. The heat transfer surface area is 25 m?, the overall heat transfer coefficient is 480 W/m2.°C, the effectiveness of the heat exchanger is desired to be 0.823, and the mass flow rate of geothermal water is larger than that of fresh water. The company assigned you to do the complete analysis on this hot water system. As an engineer, i. calculate mass flow rate of geothermal water (kg/s), ii. estimate the maximum rate of heat transfer (kW), ii. calculate the actual rate of heat transfer (kW), and iv. determine the outlet temperatures of both fluids.
A counterflow double-pipe heat exchanger is used to heat water from 20 deg * C to 40 deg * C with ahot oil which enters the exchanger at 180 deg * C and leaves at 140 deg * C The flow rate of wateris 3.0 kg/s and the overall heat-transfer coefficient is 200 W/m2.K. Assume the specificheat for oil is 2100 J/ kg .K. Suppose the water flow rate is cut in half. 1. What new oil flow rate would be necessary to maintain a 40 deg * C outlet watertemperature?

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License