Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.63P

A recuperator is a heat exchanger that heats air used ina combustion process by extracting energy from theproducts of combustion. It can be used to increase the efficiency of a gas turbine by increasing the temperature of air entering the combustor.

Chapter 11, Problem 11.63P, A recuperator is a heat exchanger that heats air used ina combustion process by extracting energy

Consider a system for which the recuperator is a cross-flow heat exchanger with both fluids unmixed andthe flow rates associated with the turbine exhaust and theair are m ˙ h = 6.5  kg/s and m ˙ c = 6.2  kg/s , respectively.The corresponding value of the overall heat transfer coefficient is U = 100  W/m 2 K .
(a) If the gas and air inlet temperatures are T h , i = 700  K and T c , i = 300  K , respectively, what
heat transfer surface area is needed to providean air outlet temperature of T c , o = 500  K ? Boththe air and the products of combustion may beassumed to have a specific heat of 1040  J/kg K .
(b) For the prescribed conditions, compute and plotthe air outlet temperature as a function of the heattransfer surface area.

Blurred answer
Students have asked these similar questions
. The exhaust gas regenerator (counter-flow heat exchanger) for a gas turbinehandles 1.9 kg/sec of air from its compressor and heats it by means of 2.2 kg/secof hot exhaust gas. Exhaust gas enters the regenerator at 596°C and leaves at312°C. Compressed air enters the regenerator at 220°C. For this temperaturerange a constant pressure specific heat for the exhaust has may be estimated at1090 J/kg-°C. Assume no heat transfer other than between the generator fluids.Determine the log mean temperature difference for the exchanger, °CA. 16.98 B. 26.98 C. 36.98 D. 46.98
The purpose of the regenerative heat exchanger is to essentially recycle the heat rejected in step (B) as heat absorbed in step (D). Show why this works for the case of a general working fluid with heat capacity, Cv(T). The Stirling engine (invented in 1816 by Robert Stirling) is a heat engine that produces work through cyclic compression and expansion of a gaseous working fluid, such as hot air. An idealized cyclic process, aptly named the Stirling Cycle, for such an engine consists of four steps: (A) isothermal expansion at the hot reservoir temperature, Th, (B) isochoric (constant volume) heat rejection to a regenerative heat exchanger, (C) isothermal compression at the cold reservioir temperature Te, and (D) isochoric heat absorption from the regenerative heat exchanger back to the initial state.
A boiler has a mass flow rate of 3 tons/hour of feed water at a temperature of 28 C and a pressure of 1 atm. This water is pumped to a pressure of 30 atm assuming a constant temperature. Pump efficiency is 90%. The water leaving this pump is heated in an Economizer heat exchanger to its saturation point temperature in the saturated water phase? What is the rate of heat supplied by the Economizer to heat the pump exit feedwater to the above conditions

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License