Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.51P

Untapped geothermal sites in the United States havethe estimated potential to deliver 100 , 000  MW (electric) of new, clean energy. The key component in ageothermal power plant is a heat exchanger that transfers thermal energy from hot, geothermal brine to asecond fluid that is evaporated in the heat exchanger.The cooled brine is reinjected into the geothermal wellafter it exits the heat exchange, while the vapor exitingthe heat exchanger serves as the working fluid of aRankine cycle. Consider a geothermal power plant designed to deliver P = 25  MW (electric) operating ata thermal efficiency of η = 0.20 . Pressurized hot brineat T h , i = 200 ° C is sent w the tube side of a shell-and-tube heat exchanger, while the Rankine cycle’s working fluid enters the shell side at T c , i = 45 ° C . The brineis reinjected into the well at T h , o = 80 ° C .

(a) Assuming the brine has the properties of water, determine the required brine flow raw, the requiredeffectiveness of the heat exchanger, and therequired heat transfer surface area. The overall heat transfer coefficient is U = 4000  W/m 2 .
(b) Over time, the brine fouls the heat transfer surfaces, resulting in U = 2000  W/m 2 .For the operating conditions of part (a), determine the electricpower generated by the geothermal plant underfouled heat exchanger conditions.

Blurred answer
Students have asked these similar questions
What is the advantage of using heat exchanger in plant designing compared to other heat transfer equipments?
Air source heat pumps are generally used to heat houses in Urla during winter. They typically have two heat exchangers. The one found in the exterior unit has a coil of tubing filled with a refrigerant. Since the refrigerant liquid is cooler than the surrounding air, heat is drawn into the coil from the surrounding. This warms the refrigerant so that it transitions to a gas. In this form, the refrigerant travels into the house to the heat pump's interior unit. Naturally, the heat is transferred from the refrigerant in the interior unit coil to the house. Consider a house equipped with an air source heat pump in a winter day at an outside temperature of 7 °C. The average room temperature inside the house is 22°C. The house is not well-insulated and therefore loses heat at a rate of 45,000 kJ/h. If the refrigerant temperature decreases by 5°C while it flows through the heat pump's interior heat exchanger unit, calculate the minimum flow rate of the refrigerant in kg/s required to keep…
Steam passes steadliy through a turbine and condenser as shown in the figure below. After expanding through the turbine and producing 1000kW of power, the steam is at a pressure of 0.08 bar and a quality of 87.4%; it enters a shell-and-tube heat exchanger where the steam now condenses on the outside of tubes through which cooling water flows; this condensate continues to flow, finally exiting as saturated liquid at 0.08 bar. The mass flow rate of the condensing steam is 58kg/s, In order to condense the steam, cooling water enters the tubes at 15°C and flows as a separate stream to exit at 35°C with negligible change in pressure. Stray heat transfer is negligible as are kinetic and potential effects. Considering the steam inside the turbine as a system, is the system best described as open, closed or isolated? What is the mass flow rate of steam entering the turbine in kg/s? What is the enthalpy at the inlet of the turbine in k/kg? What is the mass flowrate of the cooling water in kg/s?…

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License