Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.77P

Consider a Rankine cycle with saturated steam leaving the boiler at a pressure of 2 MPa and a condenser pressure of 10 kPa.
(a) Calculate the thermal efficiency of the ideal Rankine cycle for these operating conditions.
(b) It the net reversible work for the cycle is 0.5 MW, calculate the required flow rate of cooling watersupplied to the condenser at 15°C with an allowable temperature rise of 10°C.
(e) Design a shell-and-tube heat exchanger (one-shell, multiple-tube passes) that will meet the heat rateand temperature conditions required of the condenser. Your design should specify the number oftubes and their diameter and length.

Blurred answer
Students have asked these similar questions
A. Calculate the thermal efficiency of a Rankine cycle in which the steam is initially dry saturated at 2 Mpa and the condenser pressure 7kN/m². Express this efficiency as a percentage of a Carnot cycle efficiency of the same limits of temperature. B. If the steam leaves the boiler at 350°C with the same pressure of the boiler and condenser given above. Explain why the Rankine efficiency in (A) is less than in (B), and why the ratio of efficiencies of the respective Rankine and Carnot is grater.
Q.3 A. Calculate the thermal efficiency of a Rankine cycle in which the steam is initially dry saturated at 2 Mpa and the condenser pressure 75 kN/m?. Express this efficiency as a percentage of a Carnot cycle efficiency of the same limits of temperature. B. If the steam leaves the boiler at 350°C with the same pressure of the boiler and condenser given above. Explain why the Rankine efficiency in (A) is less than in (B), and why the ratio of efficiencies of the respective Rankine and Carnot is greater.
It is proposed to design and develop a Rankine cycle Steam Power Plant in which steam at 80 barand 500 oCis supplied to the turbine which exhausts at a pressure of 0.11 bar into a condenser. Condensate from the condenser is returned to Steam Generator (Boiler) by a Feedwater Pump. The processes in the turbine and pump can be assumed to be reversible adiabatic. In addition, pressure and temperature drops can be neglected throughout the cycle. Sketch the T-s diagram for this cycle and calculate the following performance parameters:i) Cycle Thermal Efficiency ii) Work Ratioiii) Specific Steam Consumptioniv) Condenser Heat Loadv) Mass flow rate of steam to generate a net power output of 40 Megawatts (MW).vi) Mass flow rate of cooling water required for the condenser if the cooling water inlettemperature is 26 oC and its outlet temperature is limited to 40 oC. The specific heat capacityof the cooling water is 4.18 kJ/kg K.viii) The total amount of sensible heat in kW supplied to the…

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Define welding.

DeGarmo's Materials and Processes in Manufacturing

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY