Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.82P

The curing process of Example 1.9 involves exposure of the plate to irradiation from an infrared lamp and attendant cooling by convection and radiation exchangewith the surroundings. Alternatively, in lieu of the lamp, heating may be achieved by inserting the plate in an oven whose walls (the surroundings) are maintained at an elevated temperature.

  1. Consider conditions for which the oven walls are at 200 ° C, airflow over the plate is characterized by T = 20 ° C and h = 15 W/m 2 K, and the coating has an emissivity of ε = 0.5. What is the temperature of the plate?
  2. For ambient air temperatures of 20, 40, and 60 ° C, determine the plate temperature as a function of the oven wall temperature over the range from 150 to 250 ° C . Plot your results, and identify conditions for which acceptable curing temperatures between 100 and 110 ° C may be maintained.

Blurred answer
Students have asked these similar questions
2 inch OD during a visit to a plastic sheet factory 60 m long section of a horizontal steam pipe passes from one end to the other without insulation is observed. While the temperature of the ambient air and its surfaces is 20 °C, the temperature measurements at several points are the average of the exposed surfaces of the steam pipe. indicates that the temperature is 160 °C. It is seen that the outer surface of the pipe is oxidized and The emissivity can be taken as 0.59. According to this; a) Calculate the heat loss in the steam pipe. b) The steam used is produced in a gas furnace operating with an efficiency of 59%. Factory 105500 It pays $1.10 per kJ of natural gas. If it is assumed that the factory works all year (365 days), for this facility Calculate the annual cost of heat losses in the steam pipe.
A white flying saucer made of aluminum is in outer space, and the sun is shining on the top surface of it. It has a surface area of 1 m² per side. The absorptivity (a) for white paint is 0.3 to 0.5 for solar radiation (H&H Tbl. 4.1), so a good assumption would be to use the average of 0.4. The emissivity (ɛ) for white paint in the 0-38°C range is 0.9. Incoming solar radiation intensity in outer space is 1353 W/m² (p. 12 in H&H). You may assume that there is no conductive or convective heat loss from the plate, as it is almost a vacuum in outer space. Calculate the equilibrium temperature of the plate, based on the incoming solar radiation and the outgoing radiation from the plate back to outer space.
Consider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/m°C, b) free flowing air with h = 7.5 W/m2°C, c) evacuated, d) filled with urethane insulation with k = 0.026 W/m°C, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/m°C

Chapter 1 Solutions

Introduction to Heat Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license