Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.37P

Consider the tube and inlet conditions of Problem 1.36. Heat transfer at a rate of q = 3.89 MW is delivered to the tube. For an exit pressure of p = 8 bar, determine (a) the temperature of the water at the outlet as well as the change in (b) combined thermal and flow work, (c) mechanical energy, and (d) total energy of the water from the inlet to the outlet of the tube. Hint : As a first estimate, neglect the change in mechanical energy in solving part (a). Relevant properties may be obtained from a thermodynamics text.

Blurred answer
Students have asked these similar questions
(a) A storage tank is connected to a piping system as illustrated in Figure P1. Water at temperature of 20°C in the storage tank flows through a piping system with the pipe's diameter of 5 cm and discharges from a nozzle to the atmospheric at velocity of 3.5 m/s. The diameter of the nozzle is 3cm. Galvanized pipe is used and installed in this piping system. All the fitting components installed in this system such as regular 90° and tees are flanged type. Water at 20°C 21 m D-5 cm d-3 cm Figure P1 i. By using suitable assumptions, predict the friction factor of this piping system (Including the Moody Chart is necessary). ii. According to the obtained friction factor in section P1(a), determine the possible pipe length of this piping system ii. After 5 years of operation, the accumulation of the dirt and other micro particles stained on the pipe's wall surface have significantly reduced the water discharge from the nozzle. Please explain this phenomenon. |
Pressurized water (pin = 10 bar, Tin =110◦C) enters the bottom of an L = 12m long vertical tube of diameter D = 110 mm at a mass flow rate of m =1.5kg/s . The tube is located inside a combustion chamber, resulting in heat transfer to the tube. Superheated steam exits the top of the tube at pout = 7 bar, Tout = 600◦C. Determine the change in the rate at which the following quantities enter and exit the tube: (a) the combined thermal and flow work, (b) the mechanical energy, and (c) the total energy of the water. Also, (d) determine the heat transfer rate, Q˙. Hint: Relevant properties may be obtained from a thermodynamics text.
The figure below shows a mixing tank initially containing minitial = 2000 lb of liquid water. The tank is fitted with two inlet pipes, one delivering hot water at a mass flow rate of 0.8 lb/s and the other delivering cold water at a mass flow rate of 1.2 lb/s. Water exits through a single exit pipe at a mass flow rate of 2.5 lb/s. Hot water m₁ = 0.8 lb/s mfinal= i Determine the amount of water, in lb, in the tank after 0.5 hours. minitial lb 2 Cold water m₂ = 1.2 lb/s m3 = 2.5 lb/s

Chapter 1 Solutions

Introduction to Heat Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license