Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.53P

A thin electrical heater dissipating 4000 W/m 2 is sandwiched between two 25-mm-thick plates whose exposed surfaces experience convection with a fluid for which T = 20 ° C and h = 400 W/m 2 K . The thermo-physical properties of the plate material are ρ = 2500 kg/m 3 , c = 700 J/kg K, and k = 5 W/m K .
Chapter 2, Problem 2.53P, A thin electrical heater dissipating 4000W/m2 is sandwiched between two 25-mm-thick plates whose

  1. On T x coordinates, sketch the steady-state temperature distribution for L x + L . Calculate values of the temperatures at the surfaces, x = ± L , and the midpoint, x = 0. Label this distribution as Case 1 and explain its salient features.
  2. Consider conditions for which there is a loss of coolant and existence of a nearly adiabatic condition on the x = + L surface. On the T x coordinates used for part (a), sketch the corresponding steady-state temperature distribution and indicate the temperatures at x = 0 , ± L . Label the distribution as Case 2, and explain its key features.
  3. With the system operating as described in part (b), the surface also x = L experiences a sudden loss of the surface x coolant. This dangerous situation goes undetected for 15 min, at which time the power to the heater is deactivated. Assuming no heat losses from the surfaces of the plates, what is the eventual ( t ) , uniform, steady-state temperature distribution in the plates? Show this distribution as Case 3 on your sketch, and explain its key features. Hint-. Apply the conservation of energy requirement on a time-interval basis, Eq. 1. 12b, for the initial and final conditions corresponding to Case 2 and Case 3, respectively.
  4. On T t coordinates, sketch the temperature history at the plate locations x = 0 , ± L during the transient period between the distributions for Cases 2 and 3. Where and when will the temperature in the system achieve a maximum value?

Blurred answer
Students have asked these similar questions
You are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…
Q3/ The north wall of an electrically heated home is 20 ft long, 10 ft high, and 1 ft thick, and is made of brick whose thermal conductivity is k = 0.42 Btu/h ft °F. On a certain winter night, the temperatures of the inner and the outer surfaces of the wall are measured to be at about 62°F and 25°F, respectively, for a period of 8 hours. Determine the rate of heat loss through the wall that night.
Q2. Steam pumped through a long- insulated pipe at a temperature of T= 500 K and provides a convection coefficient of h, = 100 W/m?K at the inner surface of the pipe. The inner and outer radius of the pipe and insulation material are r1 = 10, r2 = 12 and r3 = 17 cm, respectively. The thermal conductivity of the pipe is 100 W/mK. The insulation material is glass fiber and its outer surface is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20 Internal flow Ambient air W/m?K, determine the followings: a. What are the thermal resistance coefficients for convections and conductions b. What is the heat transfer rate per unit length of the pipe c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe. t00 noints)

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License