Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.30P

The steady-state temperature distribution in a one-dimensional wall of thermal conductivity 50 W/m K and thickness 50mm is observed to be T ° ( C ) = a + b x 2 , where a = 200 ° C, b = 2000 ° C/m 2 , and x is in meters.

  1. What is the heat generation rate q . in the wall?
  2. Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate?

Blurred answer
Students have asked these similar questions
One-dimensional heat transfer through a composite wall is shown in the following figure. Please calculate the heat flow through the composite wall according to the equivalent thermal circuit. It is known that the thermal conductivity are ka=46.5 W/(m.K), kp=1.1 W/(m.K), kc =0.06 W/(m.K), respectively. The thickness of the three materials is Ax,=Axg=Axc=10mm. The temperature of wall 1 and wall 4 are t=80°C, t4=15°C, respectively. (Please give the compution process and the result.) A - Temperature profile RA Rg Rc T3 Axc A B 1 4 Figure for question 9
PROBLEM 3 In the given schematic of heat transfer for a wall, there is heat conduction through the wall and the outer surface of the wall is subject to both convection and radiation. T₁ = 308 K k = 0.3 W/m-K L = 3 mm -T₁ -ε = 0.95 111 Air Tsur = 297 K T = 297 K h = 2 W/m² K (Air) (a) Write the energy conservation equation for the system in terms of the three heat transfer modes. (b) Find the surface temperature Ts in °C.
Derive the general heat conduction equation in Cartesian coordinates. b) Electric heater wires are installed in a solid wall having a thickness of 8 cm and k =2.5W/m ◦C.The right face is exposed to an environment with h=50W/m2◦C and T∞ = 30°C, while the left face is exposed to h=75W/m2◦C and T∞ =50◦C. What is the maximum allowable heat-generation rate such that the maximum temperature in the solid does not exceed 300◦C?

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license