Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 22.5, Problem 6E
Program Plan Intro

To show the fast algorithm that evaluate a graph G’ from the given directed graph G ( V, E) having same strongly connected components as the graph G .

Blurred answer
Students have asked these similar questions
One can manually count path lengths in a graph using adjacency matrices. Using the simple example below, produces the following adjacency matrix: A B A 1 1 B 1 0 This matrix means that given two vertices A and B in the graph above, there is a connection from A back to itself, and a two-way connection from A to B. To count the number of paths of length one, or direct connections in the graph, all one must do is count the number of 1s in the graph, three in this case, represented in letter notation as AA, AB, and BA. AA means that the connection starts and ends at A, AB means it starts at A and ends at B, and so on. However, counting the number of two-hop paths is a little more involved. The possibilities are AAA, ABA, and BAB, AAB, and BAA, making a total of five 2-hop paths. The 3-hop paths starting from A would be AAAA, AAAB, AABA, ABAA, and ABAB. Starting from B, the 3-hop paths are BAAA, BAAB, and BABA. Altogether, that would be eight 3-hop paths within this graph. Write a program…
We recollect that Kruskal's Algorithm is used to find the minimum spanning tree in a weighted graph. Given a weighted undirected graph G = (V , E, W), with n vertices/nodes, the algorithm will first sort the edges in E according to their weights. It will then select (n-1) edges with smallest weights that do not form a cycle. (A cycle in a graph is a path along the edges of a graph that starts at a node and ends at the same node after visiting at least one other node and not traversing any of the edges more than once.) Use Kruskal's Algorithm to nd the weight of the minimum spanning tree for the following graph.
We are given an undirected connected graph G = (V, E) and vertices s and t.Initially, there is a robot at position s and we want to move this robot to position t by moving it along theedges of the graph; at any time step, we can move the robot to one of the neighboring vertices and the robotwill reach that vertex in the next time step.However, we have a problem: at every time step, a subset of vertices of this graph undergo maintenance andif the robot is on one of these vertices at this time step, it will be destroyed (!). Luckily, we are given theschedule of the maintenance for the next T time steps in an array M [1 : T ], where each M [i] is a linked-listof the vertices that undergo maintenance at time step i.Design an algorithm that finds a route for the robot to go from s to t in at most T seconds so that at notime i, the robot is on one of the maintained vertices, or output that this is not possible. The runtime ofyour algorithm should ideally be O((n + m) ·T ) but you will…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education