Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 22.1, Problem 5E
Program Plan Intro

To describe the algorithmic procedure complexity that evaluate the G2(V, E2) in adjacency list and adjacency matrix representation if the only two edges lie between the vertex (u, v).

Blurred answer
Students have asked these similar questions
Consider a weighted, directed graph G with n vertices and m edges that have integer weights. A graph walk is a sequence of not-necessarily-distinct vertices v1, v2, ... , Vk such that each pair of consecutive vertices Vi, Vi+1 are connected by an edge. This is similar to a path, except a walk can have repeated vertices and edges. The length of a walk in a weighted graph is the sum of the weights of the edges in the walk. Let s, t be given vertices in the graph, and L be a positive integer. We are interested counting the number of walks from s to t of length exactly L. Assume all the edge weights are positive. Describe an algorithm that computes the number of graph walks from s to t of length exactly L in O((n+ m)L) time. Prove the correctness and analyze the running time. (Hint: Dynamic Programming solution)
The Triangle Vertex Deletion problem is defined as follows: Given: an undirected graph G = (V, E) , with IVI=n, and an integer k>= 0.  Is there a set of at most k vertices in G whose deletion results in deleting all triangles in G? (a) Give a simple recursive backtracking algorithm that runs in O(3^k * ( p(n))) where p(n) is a low-degree polynomial corresponding to the time needed to determine whether a certain vertex belongs to a triangle in G.  (b) Selecting a vertex that belong to two different triangles can result in a better algorithm. Using this idea, provide an improved algorithm whose running time is O((2.562^n) * p(n)) where 2.652 is the positive root of the equation x^2=x+4
The transpose of a directed graph G = (V, E) is the graph GT = (V; ET), where ET = { (u, v) | (v, u) ϵ E}. Thus, GT is G with all its edges reversed. Describe efficient algorithms for computing GT from G, for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education