Introduction To Finite Element Analysis And Design
Introduction To Finite Element Analysis And Design
2nd Edition
ISBN: 9781119078722
Author: Kim, Nam H., Sankar, Bhavani V., KUMAR, Ashok V., Author.
Publisher: John Wiley & Sons,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 9E

Solve the differential equation in problem 8 for the following boundary conditions using the Galerkin method: u ( 0 ) = 1 , u ( 1 ) = 2 .

Assume the approximate solution as: u ˜ ( x ) = ϕ 0 ( x ) + c 1 ϕ ( x ) , where ϕ 0 ( x ) is a function that satisfies the essential boundary conditions, and ϕ 2 ( x ) is the weight function that satisfies the homogeneous part of the essential boundary conditions, that is. ϕ 1 ( 0 ) = ϕ 1 ( 1 ) = 0 . Hence, assume the functions as follows: ϕ 0 ( x ) = 1 + x , ϕ 1 ( x ) = x ( 1 x ) .

Compare the approximate solution with the exact solution by plotting their graphs. The exact solution can be derived as: u ( x ) = 2.9231 sin x + cos x x .

Blurred answer
Students have asked these similar questions
3. Using the trial function u¹(x) = a sin(x) and weighting function w¹(x) = b sin(x) find an approximate solution to the following boundary value problems by determining the value of coefficient a. For each one, also find the exact solution using Matlab and plot the exact and approximate solutions. (One point each for: (i) finding a, (ii) finding the exact solution, and (iii) plotting the solution) a. (U₁xx -2 = 0 u(0) = 0 u(1) = 0 b. Modify the trial function and find an approximation for the following boundary value problem. (Hint: you will need to add an extra term to the function to make it satisfy the boundary conditions.) (U₁xx-2 = 0 u(0) = 1 u(1) = 0
Use the Lax method to solve the inviscid Burgers' equation using a mesh with 51 points in the x direction. Solve this equation for a right propagating discontinu- ity with initial data u = 1 on the first 11 mesh points and u = 0 at all other points. Repeat your calculations for Courant numbers of 1.0, 0.6, and 0.3 and compare your numerical solutions with the analytical solution at the same time.
1. A spring mass system serving as a shock absorber under a car's suspension, supports the M=1000kgmass of the car. For this shock absorber,k=1000N/m and c=2000N s/m. The car drives over a corrugated road with force F=2000sin(wt)N. Use your notes to model the second order differential equation suited to thisapplication. Simplify the equation with the coefficient of x'' as one. Solve x (the general solution) interms of using the complimentary and particular solution method. In determining the coefficients ofyour particular solution, it will be required that you assume w2 -1=w or . Do not 1-w2=-wuse Matlab as its solution will not be identifiable in the solution entry. Do not determine the value of w.You must indicate in your solution:1. The simplified differential equation in terms of the displacement x you will be solving2. The m equation and complimentary solution3. The choice for the particular solution and the actual particular solution xp4. Express the solution x as a piecewise…
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License