Introduction To Finite Element Analysis And Design
Introduction To Finite Element Analysis And Design
2nd Edition
ISBN: 9781119078722
Author: Kim, Nam H., Sankar, Bhavani V., KUMAR, Ashok V., Author.
Publisher: John Wiley & Sons,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 22E

The stepped bar shown in the figure is subjected to a force at the center. Use the finite element method to determine the displacement field u ( x ) , axial force distribution P ( x ) , and reactions R L and R R . Assume: E = 100 GPa , the areas of cross sections of the three portions shown are, respectively, 10 4 m 2 , 2 × 10 4 m 2 , and 10 4 m 2 , and F = 10 , 000 N .

Chapter 2, Problem 22E, The stepped bar shown in the figure is subjected to a force at the center. Use the finite element

Blurred answer
Students have asked these similar questions
A long circular shaft of length L with variable cross-section is fixed onto rigid walls as shown in Figure 1.1. The polar moment of inertia of the L/3-long segment (J1) with a larger cross section is three times larger than that of a 2L/3-long segment (J2) on the right. Assume the shear modulus is constant and equal to G for the entire shaft and that strains are small and linear elastic. L/3 L/3 L/3 Figure 1.1. Shaft with variable cross-section and external torque T. (a) If the shaft is subjected to an external torque T at point b, find the angle of twist of point b with respect to point a. (b) If the shaft is subjected to an external torque T at point a, as shown in Figure 1.2, find the angle of twist of point a with respect to point b. L/3- L/3 b J2 L/3 Figure 1.2. Shaft with variable cross-section and external torque T.
EX:-Find the expression for nodal vector in a CST element subject to pressure P as shown in fig. 7 444 4 4 4 4 4 4
Analyse the statically determinate bar illustrated below by expressing the loading as a single function using Macaulay brackets and the Dirac delta, integrating to find th axial force and integrating again to find the displacements, applying the boundary conditions appropriately. Find the axial force in the bar at point A and the displaceme at point B. The cross section of the bar is constant with EA = 18000 kN. a = 4 m, b = 2 m, c = 2 m and d = 4 m. w1 = 12 kN/m, w2 = 17 kN/m,, P1 = 12 kN and P2 = 19kN. a W1 L/2 W2 Multiple Choice Answers Multiple Choice Answer: Axial force at point A (kN, tension positive): a. 3.31 b. 31.97 c. 37.33 d. 31 Multiple Choice Answer: Displacement at point B (mm, positive to right): a. 0.0061 b. 0.0395 c. 0.0193 d. 0.0261 Axial force at point A (kN, tension positive): Displacement at point B (mm, positive to right): L/2 P1 P2 (type in your multiple choice answer, e.g. a, b, c or d) (type in your multiple choice answer, e.g. a, b, c or d)
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY