Introduction to mathematical programming
Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
Expert Solution & Answer
Book Icon
Chapter 3.9, Problem 12P

Explanation of Solution

Formulation of LP:

Let,

x1 (100s) be the number of litters sold of chemical B

x2 (100s) be the number of litters sold of chemical C

x3 (100s) be the number of litters sold of chemical D

x4 (100s) be the number of litters chemical A purchased.

The profit per 100 litter on chemical B is $12.

for x1 (100s) litters the profit would be 12x1 (100s)

Also, the profit on x2 and x3 litters are 16x2 and 26x3 respectively on chemical C and D.

The total selling price =12x1+16x2+26x3

The cost per 100 litter on chemical A is $6.

If the user purchases x4 (100s)litters of chemical A, then the cost would be 6x4.

For processing x4 (100s)litters of A and x2 litters of C, the processing cost is 3x4+1x2

Subtracting the purchasing cost and processing cost from selling price, the actual profit is found.

Therefore, the objective function is,

Maximize, Z=12x1+16x2+26x3(6x4+3x4+1x2)

Constraint 1:

For, 100 litters of A, 3 hours of labour is needed

For x4 litters of A, 3x4 hours of labour is needed.

Similarly, for 100 litters of C, 1 hour of labour is needed

For, x2 litters of C, x2 hours of labour needed.

Therefore, total labour time required is x2+3x4

Since, only 200 labour hours are available, the constraint is type

Blurred answer
Students have asked these similar questions
Truckco manufactures two types of trucks: 1 and 2. Each truck must go through the painting shop and assembly shop. If the painting shop were completely devoted to painting Type 1 trucks, then 800 per day could be painted; if the painting shop were completely devoted to painting Type 2 trucks, then 700 per day could be painted. If the assembly shop were completely devoted to assembling truck 1 engines, then 1,500 per day could be assembled; if the assembly shop were completely devoted to assembling truck 2 engines, then 1,200 per day could be assembled. Each Type 1 truck contributes $300 to profit; each Type 2 truck contributes $500. How much capacity in percent does a single truck of each type uses at each shop?
A pharma company produces two types of Active Pharmaceutical Ingredients (API), API T and API C. Many biochemical materials are usually necessary to produce a small amount of APIs. To produce 1kg of API T, one must use 5kg and 10kg of biochemical materials W and P, respectively. To produce 1kg of API C, one must use 4 kg and 5 kg of biochemical materials W and P, respectively. It costs $100 and $60 to produce 1kg API T and C, respectively. The pharma company can spend $600 at most to produce the APIs. Taking into account yield uncertainties of the APIs, the pharma company has two goals as follows. Goal 1: The total amount of biochemical material W should be 35kg or more (i.e., approximately 35kg, ideally more than 35kg. In the worst case, the amount is less than 35kg.) Goal 2: The total amount of biochemical material P should be 60kg or less (i.e., approximately 60kg, ideally less than 60kg. In the worst case, the amount is more than 60kg.) The pharma company must determine how much…
The JAV Company manufactures two types of lamps; Special lamp and regular lamp. Each special lamp requires 4 pounds of brass and each regular lamp requires 8 pounds of brass. During each production period, the company's brass supply limited to 640 pounds. Each special lamp requires 6 hours of milling time in the machines and each regular lamp requires 2 hours of milling time in the machine, The company's machine are available only for 360 hours in each production period. Each special lamp requires 5 light bulbs that must be imported from Hongkong. The importation of these bulb is limited to 200 units. The contribution to profit of each special lamp and regular lamp are P400 and P360 respectively. How many units of the special lamp and regular lamp should be produced per production period in order to maximize the profit?

Chapter 3 Solutions

Introduction to mathematical programming

Ch. 3.2 - Prob. 6PCh. 3.3 - Prob. 1PCh. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.5 - Prob. 1PCh. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.7 - Prob. 1PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prob. 10PCh. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.9 - Prob. 1PCh. 3.9 - Prob. 2PCh. 3.9 - Prob. 3PCh. 3.9 - Prob. 4PCh. 3.9 - Prob. 5PCh. 3.9 - Prob. 6PCh. 3.9 - Prob. 7PCh. 3.9 - Prob. 8PCh. 3.9 - Prob. 9PCh. 3.9 - Prob. 10PCh. 3.9 - Prob. 11PCh. 3.9 - Prob. 12PCh. 3.9 - Prob. 13PCh. 3.9 - Prob. 14PCh. 3.10 - Prob. 1PCh. 3.10 - Prob. 2PCh. 3.10 - Prob. 3PCh. 3.10 - Prob. 4PCh. 3.10 - Prob. 5PCh. 3.10 - Prob. 6PCh. 3.10 - Prob. 7PCh. 3.10 - Prob. 8PCh. 3.10 - Prob. 9PCh. 3.11 - Prob. 1PCh. 3.11 - Show that Fincos objective function may also be...Ch. 3.11 - Prob. 3PCh. 3.11 - Prob. 4PCh. 3.11 - Prob. 7PCh. 3.11 - Prob. 8PCh. 3.11 - Prob. 9PCh. 3.12 - Prob. 2PCh. 3.12 - Prob. 3PCh. 3.12 - Prob. 4PCh. 3 - Prob. 1RPCh. 3 - Prob. 2RPCh. 3 - Prob. 3RPCh. 3 - Prob. 4RPCh. 3 - Prob. 5RPCh. 3 - Prob. 6RPCh. 3 - Prob. 7RPCh. 3 - Prob. 8RPCh. 3 - Prob. 9RPCh. 3 - Prob. 10RPCh. 3 - Prob. 11RPCh. 3 - Prob. 12RPCh. 3 - Prob. 13RPCh. 3 - Prob. 14RPCh. 3 - Prob. 15RPCh. 3 - Prob. 16RPCh. 3 - Prob. 17RPCh. 3 - Prob. 18RPCh. 3 - Prob. 19RPCh. 3 - Prob. 20RPCh. 3 - Prob. 21RPCh. 3 - Prob. 22RPCh. 3 - Prob. 23RPCh. 3 - Prob. 24RPCh. 3 - Prob. 25RPCh. 3 - Prob. 26RPCh. 3 - Prob. 27RPCh. 3 - Prob. 28RPCh. 3 - Prob. 29RPCh. 3 - Prob. 30RPCh. 3 - Prob. 31RPCh. 3 - Prob. 32RPCh. 3 - Prob. 33RPCh. 3 - Prob. 34RPCh. 3 - Prob. 35RPCh. 3 - Prob. 36RPCh. 3 - Prob. 37RPCh. 3 - Prob. 38RPCh. 3 - Prob. 39RPCh. 3 - Prob. 40RPCh. 3 - Prob. 41RPCh. 3 - Prob. 42RPCh. 3 - Prob. 43RPCh. 3 - Prob. 44RPCh. 3 - Prob. 45RPCh. 3 - Prob. 46RPCh. 3 - Prob. 47RPCh. 3 - Prob. 48RPCh. 3 - Prob. 49RPCh. 3 - Prob. 50RPCh. 3 - Prob. 51RPCh. 3 - Prob. 52RPCh. 3 - Prob. 53RPCh. 3 - Prob. 54RPCh. 3 - Prob. 56RPCh. 3 - Prob. 57RPCh. 3 - Prob. 58RPCh. 3 - Prob. 59RPCh. 3 - Prob. 60RPCh. 3 - Prob. 61RPCh. 3 - Prob. 62RPCh. 3 - Prob. 63RP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole