General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 19.130MP

(a)

Interpretation Introduction

Interpretation:

The electron dot structure for NO,O2-,ONOO- and the O-N-O bond angle in ONOO- has to be given.

Concept introduction:

Electron-dot structure: It is a diagram in which dots are placed around the chemical symbol of an element to show its valence electrons. It is also called as Lewis dot diagrams.

  • Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds
  • It is also known as Lewis dot structures which represent the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
  • The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.

VSEPR theory:

  • Using VSEPR theory, the exact geometry of a molecule can be obtained.
  • In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
  • Bond angle is the angle between two bonds of a molecule and it is determined based on the electron-domain geometry.

    [Bond angles: tetrahedral = 109.5o, trigonal planar = 120o, T-shape = 90o]

(b)

Interpretation Introduction

Interpretation:

The reason for having an intermediate bond length between the length of a NO triple bond and a NO double bond for NO and its paramagnetic behaviour has to be accounted.

Concept introduction:

Molecular orbital theory:

  • The atomic orbitals of the atoms constituted in a molecule are combined to produce new orbitals called Molecular Orbitals.
  • Like atomic orbitals, a molecular orbital can accommodate maximum two electrons and the two electrons must have opposite spins (Pauli Exclusion Principle).
  • The numbers of MO’s are equals to the number of atomic orbitals combined in such a way that the linear combination of similar atomic orbitals to form one bonding and one anti-bonding MO’s.
  • The bonding MO’s are lower in energy than the anti-bonding MO’s.
  • HOMO is the highest energized occupied orbital in the MO’s.
  • Relative energy levels of molecules are according to the energy levels of atomic orbitals.
  • LUMO is the lowest energized orbital in the MO’s.

Bond order:

Bondorder=12[(numberofelectronsinbondingmolecularorbitals)-(numberofelectronsinantibondingmolecularorbitals)]

Paramagnetic property: The presence of unpaired electrons in the electronic configuration of the metal ion in coordination complex.

Diamagnetic property: The absence of unpaired electrons of the metal ion in coordination compound which do repel by the magnet.

Blurred answer
Students have asked these similar questions
Compounds such as NaBH₄, Al(BH₄)₃, and LiAlH₄ arecomplex hydrides used as reducing agents in many syntheses.(a) Give the oxidation state of each element in these compounds.(b) Write a Lewis structure for the polyatomic anion in NaBH₄,and predict its shape.
Compounds such as NaBH4, Al(BH4)3, and LiAlH4 are complex hydrides used as reducing agents in many syntheses. (a) Give the oxidation state of each element in these compounds. (b) Write a Lewis structure for the polyatomic anion in NaBH4, and predict its shape.
The elements sodium, aluminum, and chlorine are in the same period. (a) Which has the greatest electronegativity? (b) Which of the atoms is smallest? (c) Which is the largest possible oxidation state for each of these elements? (d) Will the oxide of each element in the highest oxidation state (write its formula) be acidic, basic, or amphoteric?

Chapter 19 Solutions

General Chemistry: Atoms First

Ch. 19 - Prob. 19.11CPCh. 19 - Prob. 19.12CPCh. 19 - Locate the following elements on the periodic...Ch. 19 - Prob. 19.14CPCh. 19 - Prob. 19.15CPCh. 19 - Prob. 19.16CPCh. 19 - Prob. 19.17CPCh. 19 - Prob. 19.18CPCh. 19 - Prob. 19.19CPCh. 19 - Prob. 19.20SPCh. 19 - Prob. 19.21SPCh. 19 - Prob. 19.22SPCh. 19 - Prob. 19.23SPCh. 19 - Prob. 19.24SPCh. 19 - Prob. 19.25SPCh. 19 - Prob. 19.26SPCh. 19 - Prob. 19.27SPCh. 19 - Prob. 19.28SPCh. 19 - Which compound in each of the following pairs is...Ch. 19 - Prob. 19.30SPCh. 19 - Prob. 19.31SPCh. 19 - Prob. 19.32SPCh. 19 - Prob. 19.33SPCh. 19 - Prob. 19.34SPCh. 19 - Prob. 19.35SPCh. 19 - Prob. 19.36SPCh. 19 - Prob. 19.37SPCh. 19 - Prob. 19.38SPCh. 19 - Prob. 19.39SPCh. 19 - Prob. 19.40SPCh. 19 - Prob. 19.41SPCh. 19 - Prob. 19.42SPCh. 19 - Prob. 19.43SPCh. 19 - Prob. 19.44SPCh. 19 - Prob. 19.45SPCh. 19 - Prob. 19.46SPCh. 19 - Prob. 19.47SPCh. 19 - Prob. 19.48SPCh. 19 - Prob. 19.49SPCh. 19 - Prob. 19.50SPCh. 19 - Prob. 19.51SPCh. 19 - Prob. 19.52SPCh. 19 - Prob. 19.53SPCh. 19 - Prob. 19.54SPCh. 19 - Prob. 19.55SPCh. 19 - Prob. 19.56SPCh. 19 - Prob. 19.57SPCh. 19 - Prob. 19.58SPCh. 19 - Prob. 19.59SPCh. 19 - Prob. 19.60SPCh. 19 - Prob. 19.61SPCh. 19 - Prob. 19.62SPCh. 19 - Prob. 19.63SPCh. 19 - Prob. 19.64SPCh. 19 - Prob. 19.65SPCh. 19 - Prob. 19.66SPCh. 19 - Prob. 19.67SPCh. 19 - Prob. 19.68SPCh. 19 - Prob. 19.69SPCh. 19 - Prob. 19.70SPCh. 19 - Draw electron-dot structures for: (a) Nitrous...Ch. 19 - Prob. 19.72SPCh. 19 - Prob. 19.73SPCh. 19 - Prob. 19.74SPCh. 19 - Prob. 19.75SPCh. 19 - Prob. 19.76SPCh. 19 - Prob. 19.77SPCh. 19 - Prob. 19.78SPCh. 19 - Describe the process used for the industrial...Ch. 19 - Prob. 19.80SPCh. 19 - Prob. 19.81SPCh. 19 - Describe the structure of the sulfur molecules in:...Ch. 19 - Prob. 19.83SPCh. 19 - Prob. 19.84SPCh. 19 - Prob. 19.85SPCh. 19 - Describe the contact process for the manufacture...Ch. 19 - Describe a convenient laboratory method for...Ch. 19 - Prob. 19.88SPCh. 19 - Prob. 19.89SPCh. 19 - Prob. 19.90SPCh. 19 - Account for each of the following observations:...Ch. 19 - Prob. 19.92SPCh. 19 - Prob. 19.93SPCh. 19 - Prob. 19.94SPCh. 19 - Prob. 19.95SPCh. 19 - Prob. 19.96SPCh. 19 - Prob. 19.97SPCh. 19 - Prob. 19.98SPCh. 19 - Prob. 19.99SPCh. 19 - Write a balanced net ionic equation for each of...Ch. 19 - Prob. 19.101SPCh. 19 - Prob. 19.102CHPCh. 19 - Prob. 19.103CHPCh. 19 - Prob. 19.104CHPCh. 19 - Prob. 19.105CHPCh. 19 - Prob. 19.106CHPCh. 19 - Prob. 19.107CHPCh. 19 - Prob. 19.108CHPCh. 19 - Prob. 19.109CHPCh. 19 - Prob. 19.110CHPCh. 19 - Prob. 19.111CHPCh. 19 - Prob. 19.112CHPCh. 19 - Prob. 19.113CHPCh. 19 - Which of the group 4A elements have allotropes...Ch. 19 - Prob. 19.115CHPCh. 19 - Prob. 19.116CHPCh. 19 - Prob. 19.117CHPCh. 19 - Prob. 19.118CHPCh. 19 - Prob. 19.119CHPCh. 19 - Prob. 19.120CHPCh. 19 - Prob. 19.121CHPCh. 19 - Prob. 19.122CHPCh. 19 - Prob. 19.123CHPCh. 19 - Prob. 19.124CHPCh. 19 - Prob. 19.125CHPCh. 19 - Prob. 19.126CHPCh. 19 - Give one example from main group chemistry that...Ch. 19 - Prob. 19.128CHPCh. 19 - Prob. 19.129CHPCh. 19 - Prob. 19.130MPCh. 19 - Prob. 19.133MPCh. 19 - Prob. 19.134MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning