Introduction To General, Organic, And Biochemistry
Introduction To General, Organic, And Biochemistry
12th Edition
ISBN: 9781337571357
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 30P
Interpretation Introduction

(a)

Interpretation:

The ratio of A- to [HA] with the help of pH and pKa values should be calculated.

Concept Introduction:

The pH of a solution indicates the number of H3 O+ ions in the solution. The mathematical relation between pH and H3 O+ is as given below;.

pH =  log [H3O+][H3O+] = 10pH

Acid dissociation constant Ka is related to pKa as;.

pKa =  log KaKa = 10pKa.

Expert Solution
Check Mark

Answer to Problem 30P

103.

Explanation of Solution

Given Information:

pKa = 5.0.

pH = 2.0.

Calculation:

From pH of solution, concentration of hydroxide ion can be calculated as follows:

[H3O+] = 10pH= 102  = 0.01 

Also,

 Ka = 10pKa= 105 

Since,

[A][HA]=Ka[H3O+]

Thus, by putting the values, the ratio [A][HA] can be calculated as follows:

[A][HA]=105102=103.

Interpretation Introduction

(b)

Interpretation:

The ratio of A- to [HA] with the help of pH and pKa values should be calculated.

Concept Introduction:

The pH of a solution indicates the number of H3 O+ ions in the solution. The mathematical relation between pH and H3 O+ is as given below;.

pH =  log [H3O+][H3O+] = 10pH

Acid dissociation constant Ka is related to pKa as;.

pKa =  log KaKa = 10pKa.

Expert Solution
Check Mark

Answer to Problem 30P

Given:

pKa = 5.0.

pH = 5.0.

Hence [H3 O+ ] = 10-pH = 10-5.

And Ka = 10-pKa = 10-5.

Since Introduction To General, Organic, And Biochemistry, Chapter 17, Problem 30P

Plug the values of Ka and H3 O+ ions to calculate the ratio of [A- ] to [HA].

[A- ] / [HA] = 10-5 / 10-5 = 1.

Explanation of Solution

Given Information:

pKa = 5.0.

pH = 5.0.

Calculation:

From pH of solution, concentration of hydroxide ion can be calculated as follows:

[H3O+] = 10pH= 105  = 1.0×105  

Also,

 Ka = 10pKa= 105 

Since,

[A][HA]=Ka[H3O+]

Thus, by putting the values, the ratio [A][HA] can be calculated as follows:

[A][HA]=105105=1.

Interpretation Introduction

(c)

Interpretation:

The ratio of A- to [HA] with the help of pH and pKa values should be calculated.

Concept Introduction:

The pH of a solution indicates the number of H3 O+ ions in the solution. The mathematical relation between pH and H3 O+ is as given below;.

pH =  log [H3O+][H3O+] = 10pH

Acid dissociation constant Ka is related to pKa as;.

pKa =  log KaKa = 10pKa.

Expert Solution
Check Mark

Answer to Problem 30P

102.

Explanation of Solution

Given Information:

pKa = 5.0.

pH = 7.0.

Calculation:

From pH of solution, concentration of hydroxide ion can be calculated as follows:

[H3O+] = 10pH= 107  = 1.0× 107  

Also,

 Ka = 10pKa= 105 

Since,

[A][HA]=Ka[H3O+]

Thus, by putting the values, the ratio [A][HA] can be calculated as follows:

[A][HA]=1051.0× 107  =102.

Interpretation Introduction

(d)

Interpretation:

The ratio of A- to [HA] with the help of pH and pKa values should be calculated.

Concept Introduction:

The pH of a solution indicates the number of H3 O+ ions in the solution. The mathematical relation between pH and H3 O+ is as given below;.

pH =  log [H3O+][H3O+] = 10pH

Acid dissociation constant Ka is related to pKa as;.

pKa =  log KaKa = 10pKa.

Expert Solution
Check Mark

Answer to Problem 30P

104.

Explanation of Solution

Given Information:

pKa = 5.0.

pH = 9.0.

Calculation:

From pH of solution, concentration of hydroxide ion can be calculated as follows:

[H3O+] = 10pH= 109  = 1.0× 109 

Also,

 Ka = 10pKa= 105 

Since,

[A][HA]=Ka[H3O+]

Thus, by putting the values, the ratio [A][HA] can be calculated as follows:

[A][HA]=1051.0× 109  =104.

Interpretation Introduction

(e)

Interpretation:

The ratio of A- to [HA] with the help of pH and pKa values should be calculated.

Concept Introduction:

The pH of a solution indicates the number of H3 O+ ions in the solution. The mathematical relation between pH and H3 O+ is as given below;.

pH =  log [H3O+][H3O+] = 10pH

Acid dissociation constant Ka is related to pKa as;.

pKa =  log KaKa = 10pKa.

Expert Solution
Check Mark

Answer to Problem 30P

106.

Explanation of Solution

Given Information:

pKa = 5.0.

pH = 11.0.

Calculation:

From pH of solution, concentration of hydroxide ion can be calculated as follows:

[H3O+] = 10pH= 1011  = 1.0× 1011 

Also,

 Ka = 10pKa= 105 

Since,

[A][HA]=Ka[H3O+]

Thus, by putting the values, the ratio [A][HA] can be calculated as follows:

[A][HA]=1051.0× 1011  =106.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the pH of each of the following solutions. (a) 0.109 M HONH, (Ko = 1.1 x 10-3) 4.0 9.34 X (b) 0.109 M HONH3CI 4.0 2.64 (c) pure H₂O 7.00 X (d) a mixture containing 0.109 M HONH₂ and 0.109 M HONH₂CI 4.0 6.20 X
Calculate the pKa of the weak acid HA, given that a solution that is 0.357 in HA and 1.24 in A- has pH = 5.32.Provide your answer rounded to 2 decimal digits.
COHSOH(ag) + H2On + CeHsO (aq) + H3O*(a9) Ka= 1.12 x 10-10 (a) Phenol is a weak acid that partially dissociates in water according to the equation above. Write the equilibrium-constant expression for the dissociation of the acid in water. (b) What is the pH of a 0.75 M CaHsOH(ag) solution? (C) For a certain reaction involving CaHsOH(ag) to proceed at a significant rate, the phenol must be primarily in its deprotonated form, C3H5O (eg). In order to ensure that the CsHsOH(aq) is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form (CoHsO (aq). Justify your answer. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Justification: (d) CeHsOH(ag) reacts with NaOH(ag). Write a net ionic equation representing this reaction (aka: invasion equation). (e) What is the pH of the resulting solution when 30 mL of 0.40 M CSH5OH(aq) is added to 25 mL of 0.60 M NAOH. Show all work…

Chapter 17 Solutions

Introduction To General, Organic, And Biochemistry

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY