Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.44P

A composite refrigerator wall is composed of 5 cm of corkboard sandwiched between a 1.2-cm-thick layer of oak and a 0.8-mm-thick layer of aluminum lining on the inner surface. The average convection heat transfer coefficients at the interior and exterior wall are 11 and 8.5   W / ( m 2 K ) respectively. (a) Draw the thermal circuit. (b) Calculate the individual resistances of the components of this composite wall and the resistances at the surfaces. (c) Calculate the overall heat transfer coefficient through the wall. (d) For an air temperature of –1°C inside the refrigerator and 32°C outside, calculate the rate of heat transfer per unit area through the wall.

Blurred answer
Students have asked these similar questions
How many inches of insulation are required to insulate a ceiling such that the surface temperature of the ceiling facing the living area is within 2°C of the room air temperature? Assume a heat transfer coefficient on both sides of the ceiling of 2.84 W/(m2 • K) and a thermal conductivity of 0.0346 W/(m . K) for the insulation. The ceiling is 1.27 cm thick plasterboard with a thermal conductivity of 0.433 W/(m . K). Room temperature is 20°C and attic temperature is 49°C.
Consider 469 mm × 447 mm window in an aircraft. For a temperature difference of 98°C from the inner to the outer surface of the window, calculate the heat loss rate through L = 15-mm-thick polycarbonate, soda lime glass, and aerogel windows, respectively. The thermal conductivities of the soda lime glass, aerogel and polycarbonate are ksl = 1.960 W/m, kag = 0.011 W/m · K and kpc = 0.201 W/m · K, respectively. If the aircraft has 110 windows and the cost to heat the cabin air is $1.8/kW · h, compare the costs associated with the heat loss through the windows for an 10-hour intercontinental flight.
One side of refrigerated cold chamber is 6 m long by 3.7 m high and consists of 168 mm thickness of cork between outer and inner walls of wood. The outer wood wall is 30 mm thick and its outside face temperature is 20 deg C, the inner wood wall is 35 mm thick and its inside face temperature is -3 deg C. Taking the coefficient of thermal conductivity of cork and wood as 0.042 and 0.20 W/m-K respectively, calculate the heat transfer per second per sq meter of surface area. Select the correct response: 6.318 J 3.318 J 5.318 J 4.318 J

Chapter 1 Solutions

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)

Ch. 1 - 1.11 Calculate the heat loss through a glass...Ch. 1 - 1.12 A wall with a thickness is made of a...Ch. 1 - 1.13 If the outer air temperature in Problem is...Ch. 1 - Using Table 1.4 as a guide, prepare a similar...Ch. 1 - 1.15 A thermocouple (0.8-mm-diameter wire) used to...Ch. 1 - Water at a temperature of 77C is to be evaporated...Ch. 1 - The heat transfer rate from hot air by convection...Ch. 1 - The heat transfer coefficient for a gas flowing...Ch. 1 - 1.19 A cryogenic fluid is stored in a...Ch. 1 - A high-speed computer is located in a...Ch. 1 - 1.21 In an experimental set up in a laboratory, a...Ch. 1 - 1.22 In order to prevent frostbite to skiers on...Ch. 1 - Using the information in Problem 1.22, estimate...Ch. 1 - Two large parallel plates with surface conditions...Ch. 1 - 1.25 A spherical vessel, 0.3 m in diameter, is...Ch. 1 - 1.26 Repeat Problem 1.25 but assume that the...Ch. 1 - Determine the rate of radiant heat emission in...Ch. 1 - 1.28 The sun has a radius of and approximates a...Ch. 1 - 1.29 A spherical interplanetary probe with a 30-cm...Ch. 1 - A spherical communications satellite, 2 m in...Ch. 1 - A long wire 0.7 mm in diameter with an emissivity...Ch. 1 - Wearing layers of clothing in cold weather is...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - Repeat Problem 1.35 but assume that instead of...Ch. 1 - 1.37 Mild steel nails were driven through a solid...Ch. 1 - Prob. 1.38PCh. 1 - 1.39 On a cold winter day, the outside wall of a...Ch. 1 - As a designer working for a major electric...Ch. 1 - 1.41 A heat exchanger wall consists of a copper...Ch. 1 - 1.43 A simple solar heater consists of a flat...Ch. 1 - A composite refrigerator wall is composed of 5 cm...Ch. 1 - An electronic device that internally generates 600...Ch. 1 - 1.47 A flat roof is modeled as a flat plate...Ch. 1 - A horizontal, 3-mm-thick flat-copper plate, 1-m...Ch. 1 - 1.49 A small oven with a surface area of is...Ch. 1 - A steam pipe 200 mm in diameter passes through a...Ch. 1 - 1.51 The inner wall of a rocket motor combustion...Ch. 1 - 1.52 A flat roof of a house absorbs a solar...Ch. 1 - Determine the power requirement of a soldering...Ch. 1 - 1.54 The soldering iron tip in Problem 1.53...Ch. 1 - Prob. 1.55PCh. 1 - A pipe carrying superheated steam in a basement at...Ch. 1 - Draw the thermal circuit for heat transfer through...Ch. 1 - 1.60 Two electric resistance heaters with a 20 cm...Ch. 1 - 1.63 Liquid oxygen (LOX) for the space shuttle is...Ch. 1 - The interior wall of a large, commercial walk-in...Ch. 1 - 1.67 In beauty salons and in homes, a ubiquitous...Ch. 1 - The heat transfer coefficient between a surface...Ch. 1 - The thermal conductivity of fibreglass insulation...Ch. 1 - 1.71 The thermal conductivity of silver at 212°F...Ch. 1 - 1.72 An ice chest (see sketch) is to constructed...Ch. 1 - Estimate the R-values for a 5-cm-thick fiberglass...Ch. 1 - A manufacturer in the United States wants to sell...Ch. 1 - Referring to Problem 1.74, how many kilograms of...Ch. 1 - 1.76 Explain a fundamental characteristic that...Ch. 1 - 1.77 Explain each in your own words. (a) What is...Ch. 1 - What are the important modes of heat transfer for...Ch. 1 - 1.79 Consider the cooling of (a) a personal...Ch. 1 - Describe and compare the modes of heat loss...Ch. 1 - A person wearing a heavy parka is standing in a...Ch. 1 - Discuss the modes of heat transfer that determine...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license