PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 27P
To determine

The user equilibrium flows and total hourly origin-destination demand after the capacity improvement.

Blurred answer
Students have asked these similar questions
8.21 Three routes connect an origin and destination with performance functions t₁ = 2 +0.5x₁,₂ = 1 + x2 and 13 = 4 + 0.2x, (with f's in minutes and x's in thousands of vehicles per hour). Determine user- equilibrium flows if the total origin-to-destination demand is (a) 5000 veh/h.
Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
3. Three routes connect an origin-destination pair with performance functions: ti=20 +0.51 t₂ = 4+2x2 tε = 3 +0.2x² with t in minutes and r in thousand vehicles per hour. (a) Determine the User Equilibrium flow on each route if q = 4000veh/h. (b) What is the minimum q (origin-destination demand) to ensure that all the three routes are used under user equilibrium? (c) Suppose that Route 1 is closed for repair. Find the system optimal flow on routes 2 and 3 and compute the total travel times.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning