Life in the Universe (4th Edition)
Life in the Universe (4th Edition)
4th Edition
ISBN: 9780134089089
Author: Jeffrey O. Bennett, Seth Shostak
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 48IF

Mission to Pluto. The New Horizons spacecraft took about 9 years to travel from Earth orbit to Pluto. About how fast was it traveling on average? Assume that its trajectory was close to a straight line. Give your answer in AU/year and in km/hr. (Hint: You can find needed data in Appendix D.)

Blurred answer
Students have asked these similar questions
Let's use Kepler's laws for the inner planets. Use the following distances from the sun to calculate the orbital period for each of these planets. Express your answer in terms of Earth years to two significant figures. Note: Use Kepler's law directly. Don't just Google the answers, as they will be a little bit different. When you have calculated them, only submit the value for Mercury. Planet Distance from the sun Period of orbit around the sun Earth 150 million km ___ Earth years Mercury 58 million km ___ Earth years Venus 108 million km ___ Earth years Mars 228 million km ___ Earth years
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…
You are given the following data from observations of an exoplanet: Using Kepler’s Third Law (r3 = MT2 where M is the mass of the central star) find the orbital radius in astronomical units of this planet. M = 1.5 times the mass of the sun. Remember to convert days to years using 365.25 as the length of a year in days. What is the semimajor axis of this planet in AU? - Knowing the orbital radius in both kn and AU, use the value in km to find the circumference of the orbit, then convert that to meters. (Assume the orbit is a perfect circle).  - Knowing the orbital circumference and the period in days, convert the days to seconds (multiply by 86,400) and find the orbital velocity in m/s - With that orbital velocity, the radius of the orbit in meters, find the centripetal acceleration of our exoplanet - Knowing the acceleration that our planet experiences, calculate the force that the host star exerts on the planet - Knowing the force on the planet, the orbital radius, and the mass of the…

Chapter 7 Solutions

Life in the Universe (4th Edition)

Ch. 7 - What characteristics make some of the large moons...Ch. 7 - Briefly describe the prospects for habitability of...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - For a few of the most important past, present, or...Ch. 7 - On the smallest moon of Uranus, my team discovered...Ch. 7 - New spacecraft images show lakes of liquid water...Ch. 7 - We are pumping water for our new Moon colony from...Ch. 7 - I was part of the first group of people to land on...Ch. 7 - We sent a robotic airplane into the atmosphere of...Ch. 7 - On a moon of Neptune, we discovered photosynthetic...Ch. 7 - We deposited bacteria (from Earth) that get energy...Ch. 7 - The drilled sample showed no signs of life on...Ch. 7 - We cut holes in the frozen surface of a methane...Ch. 7 - The drilled sample from Mars brought up rock that...Ch. 7 - Oxygen and carbon are (a) rarer than almost all...Ch. 7 - On an asteroid that is twice as far as Earth from...Ch. 7 - Compared to liquid water, liquid methane is (a)...Ch. 7 - Frozen lakes often have liquid water beneath their...Ch. 7 - Temperatures on Mercury are (a) always very hot;...Ch. 7 - On Venus, liquid water (a) does not exist...Ch. 7 - The reason Venus is so much hotter than Earth is...Ch. 7 - Life is probably not possible in Jupiters...Ch. 7 - Which of the following are you most likely to find...Ch. 7 - The Cassini spacecraft (a) flew past Pluto; (b)...Ch. 7 - Bizarre Forms of Life. Discuss some forms of life...Ch. 7 - Making a Living. Consider various methods by which...Ch. 7 - Solar System Tour. Based on the brief tour in this...Ch. 7 - Galileo Spacecraft. In 2003, scientists...Ch. 7 - Greenhouse Effect. The text (in Chapter 4) makes...Ch. 7 - Prob. 41IFCh. 7 - Understanding Newtons Version of Keplers Third Law...Ch. 7 - Understanding Newtons Version of Keplers Third Law...Ch. 7 - Earth Mass. The Moon orbits Earth in an average...Ch. 7 - Jupiter Mass. Jupiters moon Io orbits Jupiter...Ch. 7 - Pluto/Charon Mass. Plutos moon Charon orbits Pluto...Ch. 7 - Mission to Pluto. The New Horizons spacecraft took...Ch. 7 - Planetary Missions. Visit the web page for one of...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    The Solar System
    Physics
    ISBN:9781305804562
    Author:Seeds
    Publisher:Cengage
    Text book image
    An Introduction to Physical Science
    Physics
    ISBN:9781305079137
    Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
    Publisher:Cengage Learning
    Text book image
    Stars and Galaxies
    Physics
    ISBN:9781305120785
    Author:Michael A. Seeds, Dana Backman
    Publisher:Cengage Learning
  • Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY