EBK PHYSICS FOR SCIENTISTS & ENGINEERS
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 47GP
To determine

The distance of the nearest star.

Blurred answer
Students have asked these similar questions
Double stars are stars which are close enough and move slowly enough that they orbit each other.  Each star is located at the focus of the ellipse of its orbit around the other star.  Consider a binary star system which has an average angular separation of 6.1" arc and a period of 87.3 years. The annual parallax of the stars, p, is 0.192"arc.  We call the measure of the angular separation of the two stars, .  [remember that 1 degree is divided into 60 'arc (read this as 60 minutes of arc) and each 1'arc is subdivided into 60"arc (read this as 60 seconds of arc)].  The distance to the binarystar system is calculated from its parallax , p, of 0.192"arc, which has been measured carefully over a period of the last 92 years.  First we must calculate the distance to the binary system:  D  =  1/p   where p is the parallax in seconds of arc giving D in parsecs.  The distance, D =  1/p = ________ pc How many light years does this correspond to?  (remember that 1 pc = 3.26 lt yr)  D (in light…
Earth is about 150 million kilometers from the Sun (1 Astronomical Unit, or AU), and the apparent brightness of the Sun in our sky is about 1300 watts/m^2. Using these two facts and the inverse square law for light, determine the apparent brightness that we would measure for the Sun if we were located at the following positions. a) At the orbit of Venus (67 million km from the Sun). b) At the orbit of Jupiter (780 million km from the Sun). c) At the mean distance of Pluto (40 Astronomical Units).
Time left 1:45:56 A star has initially a radius of 680000000 m and a period of rotation about its axis of 33 days. Eventually it changes into a neutron star with a radius of only 45000 m and a period of 0.3 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 2.17E+15 Ob. 24 Oc. 0.0416 Od. 4.61E-16 (b) the ratio of initial to final kinetic energy Oa. 4.85E-23 Ob. 396000 Oc. 2.53E-6 Od. 2.06E+22
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    University Physics Volume 1
    Physics
    ISBN:9781938168277
    Author:William Moebs, Samuel J. Ling, Jeff Sanny
    Publisher:OpenStax - Rice University
  • Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax