Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.12P

Consider the flow over a semi-infinite body as discussed in Section 3.11. If V is the velocity of the uniform stream, and the stagnation point is 1 ft upstream of the source:

a. Draw the resulting semi-infinite body to scale on graph paper.

b. Plot the pressure coefficient distribution over the body; that is, plot C p , versus distance along the centerline of the body.

Blurred answer
Students have asked these similar questions
A sink of strength 20 m2/s is situated 3 m upstream of a source of 40 m²/s in a uniform stream. It is found that, at a point 2.5 m from both source and sink, the local velocity is normal to the line joining the source and sink. Find the velocity at this point and the velocity of the uniform stream. Locate any stagnation points and sketch the flow field.
A turbine (see the figure of Example IIIa.3.21) is located at an elevation H1 from the surface of a lake with the discharge pipe located at an elevation H2 from the turbine centerline. Find flow velocity, V4 in terms of H1, H2, P1, P4, h,, and p where subscript 4 refers to the discharge piping. [Ans.: V, = (2/p)[(R – P.) + pg (Z, – Z, –h,)]. Lake H, h. D2 4 D4 H4 Turbine
3. A circular cylinder of radius a is fitted with two pressure sensors to measure pressure at 0 = 180° and at 150°. The intent is to use this cylinder as a stream velocimeter, i.e. a device to determine the velocity of a stream by measuring the pressures at the two taps. The fluid is incompressible with a density of p. Figure for Part (a) U Figure for Part (b) 30 a) Using potential flow approximation, derive a formula for calculating U from the measured pressure difference at the two pressure taps. Note that for accurate measurement, the velocimeter must be aligned to have one of the taps exactly facing the stream as shown in the figure. (Ans: 2|Aptaps|/p ) b) Suppose the velocimeter has been misaligned by ổ degrees so that the two pressure taps are now at 180° + 8 and 150° + 8. Derive an expression for the percent error in stream velocity measurement. Then, calculate the error for 8 = 5°,10° and –10°. (Ans: [2/(sin2(150 + 8) – sin²(180 + 8) )– 1] × 100 )

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license