Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 24, Problem 5P

(a)

Program Plan Intro

To show that if μ *=0 then the graph should not contains any negative weight cycle and ξk(s, v), v ∈ V .

(b)

Program Plan Intro

To show that if µ*=0 then δn(s,v)δk(s,v)nk0 , k ∈ (0,…., n -1), for all v ∈ V .

(c)

Program Plan Intro

To prove that δ(s,v)=δ(s,u)+x , if x is the weight of path from vertex u to vertex v on 0-weight cycle.

(d)

Program Plan Intro

To show that μ *=0 then δn(s,v)δk(s,v)nk0 , k ∈ (0,...., n -1), for all v∈ Von every minimum mean weight cycle.

(e)

Program Plan Intro

To show that if μ *=0, minvVmax0kn1δn(s,v)δk(s,v)nk=0 .

(f)

Program Plan Intro

To show if a constant t is added to weight of each edge of G , then μ *increases by t . Also show µ*=minvVmax0kn1δn(s,v)δk(s,v)nk

(g)

Program Plan Intro

To provide an algorithm that takes O (VE) time to evaluate μ *.

Blurred answer
Students have asked these similar questions
Consider the Minimum-Weight-Cycle Problem: Input: A directed weighted graph G = :(V, E) (where the weight of edge e is w(e)) and an integer k. Output: TRUE if there is a cycle with total weight at most k and FALSE if there is no cycle with total weight at most k. Remember, a cycle is a list of vertices such that each vertex has an edge to the next and the final vertex has an edge to the first vertex. Each vertex can only occur once in the cycle. A vertex with a self-loop forms a cycle by itself. (a) Assume that all edge weights are positive. Give a polynomial-time algorithm for the Minimum-Weight-Cycle Problem. For full credit, you should: Give a clear description of your algorithm. If you give pseudocode, you should support it with an expla- nation of what the algorithm does. Give the running time of your algorithm in terms of the number of vertices n and the number of edges m. - You do not need to prove the correctness of your algorithm or the correctness of your running time…
Consider the Minimum-Weight-Cycle Problem: Input: A directed weighted graph G (V, E) (where the weight of edge e is w(e)) and an integer k. Output: TRUE if there is a cycle with total weight at most k and FALSE if there is no cycle with total weight at most k. Remember, a cycle is a list of vertices such that each vertex has an edge to the next and the final vertex has an edge to the first vertex. Each vertex can only occur once in the cycle. A vertex with a self-loop forms a cycle by itself. (a) Assume that all edge weights are positive. Give a polynomial-time algorithm for the Minimum-Weight-Cycle Problem. For full credit, you should: - Give a clear description of your algorithm. If you give pseudocode, you should support it with an expla- nation of what the algorithm does. Give the running time of your algorithm in terms of the number of vertices n and the number of edges m. You do not need to prove the correctness of your algorithm or the correctness of your running time analysis.
We are given a graph G = (V, E); G could be a directed graph or undirected graph. Let M bethe adjacency matrix of G. Let n be the number of vertices so that the matrix M is n ×n matrix. For anymatrix A, let us denote the element of i-th row and j-th column of the matrix A by A[i, j].1. Consider the square of the adjacency matrix M . For all i and j, show that M 2[i, j] is the number ofdifferent paths of length 2 from the i-th vertex to the j-th vertex. It should be explained or proved asclearly as possible.2. For any positive integer k, show that M k[i, j] is the number of different paths of length k from the i-th vertex to the j-th vertex. You may use induction on k to prove it.3. Assume that we are given a positive integer k. Design an algorithm to find the number of different paths of length k from the i-th vertex to j-th vertex for all pairs of (i, j). The time complexity of your algorithm should be O(n3 log k). You can get partial credits if you design an algorithm of O(n3k).
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education