Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 1.4, Problem 1.4P

(a)

To determine

The normalization constant of the given wave function.

(b)

To determine

The sketch of the given wave function.

(c)

To determine

The most probable position at which the particle is found at t=0 .

(d)

To determine

The probability doubt that the particle is to the left of a.

(e)

To determine

The expectation value of x.

Blurred answer
Students have asked these similar questions
The wave function of a particle in a one-dimensional box of width L is u(x) = A sin (7x/L). If we know the particle must be somewhere in the box, what must be the value of A?
A particle with mass m is moving in three-dimensions under the potential energy U(r), where r is the radial distance from the origin. The state of the particle is given by the time-independent wavefunction, Y(r) = Ce-kr. Because it is in three dimensions, it is the solution of the following time-independent Schrodinger equation dıp r2 + U(r)µ(r). dr h2 d EÞ(r) = 2mr2 dr In addition, 00 1 = | 4ar?y? (r)dr, (A(r)) = | 4r²p²(r)A(r)dr. a. Using the fact that the particle has to be somewhere in space, determine C. Express your answer in terms of k. b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent wave equation, what is the energy E of the particle and the potential energy U(r). (As usual, E and U(r) will be determined up to a constant.) Express your answer in terms of m, k, and ħ.
A particle of massm in a harmonic oscillator potential with angular frequency w is in the state (1 + {t)쭈 What is (p?) for this particle? mhw 2 O 6mħw O 3mhw
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax