Q2/ A metal plate of 4mm thickness (k = 95.5 W/m°C) is exposed to vapor at 100°C on one side and cooling water at 25°C on the opposite side. The heat transfer coefficients on vapor side and waterside are 14500 W/m^2°C and 2250 W/m^2 °C respectively. Determine the overall heat transfer coefficient

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.4P
icon
Related questions
Question
Q2/ A metal plate of 4mm thickness (k = 95.5 W/m°C) is exposed to vapor
at 100°C on one side and cooling water at 25°C on the opposite side. The
heat transfer coefficients on vapor side and waterside are 14500
W/m^2°C and 2250 W/m^2 °C respectively. Determine the overall heat
transfer coefficient *
Transcribed Image Text:Q2/ A metal plate of 4mm thickness (k = 95.5 W/m°C) is exposed to vapor at 100°C on one side and cooling water at 25°C on the opposite side. The heat transfer coefficients on vapor side and waterside are 14500 W/m^2°C and 2250 W/m^2 °C respectively. Determine the overall heat transfer coefficient *
Q1/ The center to surface temperature difference in a heat generating
cylindrical rod of 4 m diameter was 30°C. What is the difference
temperature between the center and surface in the case of a sphere of 2
m diameter under similar conditions? *
Your ancwer
Transcribed Image Text:Q1/ The center to surface temperature difference in a heat generating cylindrical rod of 4 m diameter was 30°C. What is the difference temperature between the center and surface in the case of a sphere of 2 m diameter under similar conditions? * Your ancwer
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning