hat the Na+ concentration i Transport of two Na+ ions in f the Nat concentration out

Biochemistry
6th Edition
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Reginald H. Garrett, Charles M. Grisham
Chapter32: The Reception And Transmission Of Extracellular Information
Section: Chapter Questions
Problem 14P
icon
Related questions
Question
Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na*-glucose symporter. Recall
that the Na+ concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill"
transport of two Na+ ions into the cell to the "uphill" transport of glucose into the cell.
If the Na+ concentration outside the cell ([Na* lout) is 147 mM and that inside the cell ([Na+]in) is 17.0 mM, and the cell
potential is -54.0 mV (inside negative), calculate the maximum energy available for pumping a mole of glucose into the cell.
Assume the temperature is 37 °C.
AG gluc
kJ
mol
What is the maximum ratio of [glucose]in to [glucose] out
that could theoretically be produced if the energy
coupling were 100% efficient?
1.13
2.3 × 10-4
8.36
4300
Transcribed Image Text:Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na*-glucose symporter. Recall that the Na+ concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na+ ions into the cell to the "uphill" transport of glucose into the cell. If the Na+ concentration outside the cell ([Na* lout) is 147 mM and that inside the cell ([Na+]in) is 17.0 mM, and the cell potential is -54.0 mV (inside negative), calculate the maximum energy available for pumping a mole of glucose into the cell. Assume the temperature is 37 °C. AG gluc kJ mol What is the maximum ratio of [glucose]in to [glucose] out that could theoretically be produced if the energy coupling were 100% efficient? 1.13 2.3 × 10-4 8.36 4300
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax