Example 15.12. A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It moves out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of 3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of 125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power developed by the turbine. As.um. that the water leaving the feed heater is saturated liquid at 3.2 bar and the heater is direct mixing type. Neglect pump work.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter22: Condensers
Section: Chapter Questions
Problem 7RQ: When a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be...
icon
Related questions
Question

considet m kg out of 1gk id taken to the feed henter

Example 15.12. A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It
moves out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of
3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of
125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power
developed by the turbine. As.um. that the water leaving the feed heater is saturated liquid at
3.2 bar and the heater is direct mixing type. Neglect pump work.
Transcribed Image Text:Example 15.12. A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It moves out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of 3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of 125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power developed by the turbine. As.um. that the water leaving the feed heater is saturated liquid at 3.2 bar and the heater is direct mixing type. Neglect pump work.
Example 15.12. A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It
moves out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of
3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of
125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power
developed by the turbine. As.um. that the water leaving the feed heater is saturated liquid at
3.2 bar and the heater is direct mixing type. Neglect pump work.
Transcribed Image Text:Example 15.12. A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It moves out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of 3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of 125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power developed by the turbine. As.um. that the water leaving the feed heater is saturated liquid at 3.2 bar and the heater is direct mixing type. Neglect pump work.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning