Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 62Q

(a)

To determine

The brightness of the star Betelgeuse in terms of a fraction of the Sun’s brightness. It is given that Betelgeuse is transformed from a red supergiant to a Type II supernova at the distance of 425 ly from Earth.

(a)

Expert Solution
Check Mark

Answer to Problem 62Q

Solution:

7.1×107b

Explanation of Solution

Given data:

The distance of the star from Earth is 425ly.

Formula used:

The expression for apparent magnitude of a supernova is,

m=M+5logd5

Here, m is the apparent magnitude, M is the absolute magnitude of Type II supernova and d is the distance of the star from Earth in parsecs.

The expression for ratio of brightness of two objects is,

b1b2=10(m1m2)2.5

Here, b1andb2 are the brightness and m1andm2 are the apparent magnitudes of the objects.

Explanation:

Convert the distance from light years to parsec as follows:

1ly=0.3pc

Therefore, the provided distance of the star from Earth in parsecs is,

d=425 ly(0.3 pc1ly)=130 pc

Write the formula for apparent magnitude of Type II supernova.

m=M+5logd5

The absolute magnitude for Type II supernova is 17. Substitute 17 for m and 130 for d.

m=17+5log(130)5=11.4

The apparent magnitude of the Sun is 26.8.

Write the expression for the brightness ratio of Betelgeuse and Sun.

bbS=10(mmS)2.5

Here, the subscript S refers to the corresponding quantities for the Sun and b is the brightness of Betelgeuse.

Substitute 26.8 for mS and 11.4 for m.

bBbS=1011.4(26.8)2.5=1015.42.5bB=7.1×107b

Conclusion:

So, the supernova is 7.1×107 times brighter than the Sun.

(b)

To determine

The comparison between the brightness of the supernova and that of Venus. It is given that it is transformed from a red supergiant to Type II supernova at the distance of 425 ly from Earth and the brightness of Venus is 109b.

(b)

Expert Solution
Check Mark

Answer to Problem 62Q

Solution:

The ratio of the brightness of the supernova to that of Venus is 710.

Explanation of Solution

Given data:

The brightness of Venus is 109b.

The distance of the star from Earth is 425ly.

Formula used:

The expression for apparent magnitude of a supernova is,

m=M+5logd5

Here, m is the apparent magnitude, M is the absolute magnitude of Type II supernova and d is the distance of the star from Earth in parsecs.

The expression for the ratio of brightness of two objects is,

b1b2=10(m1m2)2.5

Here, b1andb2 are the brightness and m1andm2 are the apparent magnitudes of the objects.

Explanation:

Refer to part (a). The brightness of the star with respect to that of the Sun is 7.1×107b.

In order to compare the brightness of the star with that of Venus, determine the ratio of their respective brightness (relative to the Sun), that is,

ratio=bbV

Substitute 7.1×107b for b and 109b for bV.

ratio=7.1×107b109b=710

Conclusion:

So, the supernova is 710 times brighter than Venus.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a star with more brightness at 280 pc from the Sun. Suppose this star gets exploded as a supernova at a temperature of 18000 K. The absolute bolometric magnitude of this supernova is-12.24. Calculate its diameter by assuming a sphere at maximum light. (Assume the luminosity of Sun as 3.8×1026 W, the mass of thesun as 1.9 ×1030 kg, and surface temperature of Sun as 5778 K).(a) 1.7×108 km(6) 3.5x108 km(c) 5.2x108 km(d) 6.9 x108 km
A visual binary has a parallax of 0.4 arcseconds, a maximum separation a = 6.0 arcseconds, and an orbital period P = 80 years. What is the total mass of the binary system in units of Mo, assuming a circular orbit?
As we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼ 0.024L ,and rB ∼ 0.0084r . For such a white dwarf, the temperature at the center is estimated to be ∼ 107 K.If Sirius B’s luminosity were due to hydrogen fusion, what is the upper limit of the mass fraction of thehydrogen in such a white dwarf?Step 1: Calculate the observed energy production rate per unit mass (remember luminosity is energy outputper unit time).Step 2: Use the per unit mass energy generation rate of hydrogen fusion (via PP chain) to estimate thepossible hydrogen mass fraction given the condition at the center of the white dwarf.

Chapter 20 Solutions

Universe

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning