We are testing a flat plate of length L = 1.125 m and width W = 0.225 m in a stream of air flowing with a velocity of 20 m/s. In test case 1, the air is flowing parallel to L and in test case 2 air is flowing parallel to W. Find:  What portion of the boundary layer flow is laminar in each case? What is the highest laminar boundary layer thickness in each case? Assuming the flow is entirely turbulent over the plate, calculate the drag force in both test cases Take air density as 1.2 kg/m3 and its viscosity as μ=18×10−6μ=18×10−6   N.s/m2.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.24P: Engine oil at 100C flows over and parallel to a flat surface at a velocity of 3 m/s. Calculate the...
icon
Related questions
Question

We are testing a flat plate of length L = 1.125 m and width W = 0.225 m in a stream of air flowing with a velocity of 20 m/s. In test case 1, the air is flowing parallel to L and in test case 2 air is flowing parallel to W. Find:

  1.  What portion of the boundary layer flow is laminar in each case?
  2. What is the highest laminar boundary layer thickness in each case?
  3. Assuming the flow is entirely turbulent over the plate, calculate the drag force in both test cases

Take air density as 1.2 kg/m3 and its viscosity as μ=18×10−6μ=18×10−6   N.s/m2.

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning