Velocity Task Introduction: The pedal of a bicycle is attached to a crank arm that revolves when the pedal is pushed by a person's foot. As the crank arm turns, it pulls a chain that is attached to the rear wheel of the bicycle, causing the bicycle to move forward. G 118 18 cm 16 cm A particular bicycle has wheels that are 66 cm in diameter. The radius of the crank arm is 18 cm. At its lowest point, the pedal is 16 cm above the ground. A person is pedaling the bicycle such that the crank arm rotates once every second. Questions: 1. Write an equation that models the vertical position of the foot with respect to the ground, starting from the lowest point, as the crank arm turns. 2. What is the rate of change of the vertical position of the foot when it is at the midline? Explain your answer 3. How fast, in kilometres per hour, is the bicycle moving? 4. Determine an equation that would model the foot's position when the cyclist is traveling 5 km/h. Compare this equation to your equation from question 1 and explain any differences. 5. Use calculus to explain why the rotation velocity of a point on the perimeter of a wheel is the same as the velocity of the pedal. Use examples to support your answer.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 6OQ: Consider an object on a rotating disk a distance r from its center, held in place on the disk by...
icon
Related questions
Question
Velocity Task
Introduction: The pedal of a bicycle is attached to a crank arm that revolves when the
pedal is pushed by a person's foot. As the crank arm turns, it pulls a chain that is
attached to the rear wheel of the bicycle, causing the bicycle to move forward.
C
1
18 cm
16 cm
A particular bicycle has wheels that are 66 cm in diameter. The radius of the crank arm
is 18 cm. At its lowest point, the pedal is 16 cm'above the ground. A person is pedaling
the bicycle such that the crank arm rotates once every second.
Questions:
1. Write an equation that models the vertical position of the foot with respect to the
ground, starting from the lowest point, as the crank arm turns.
2. What is the rate of change of the vertical position of the foot when it is at the
midline? Explain your answer
3.
How fast, in kilometres per hour, is the bicycle moving?
4. Determine an equation that would model the foot's position when the cyclist is
traveling 5 km/h. Compare this equation to your equation from question 1 and
explain any differences.
5. Use calculus to explain why the rotation velocity of a point on the perimeter of a
wheel is the same as the velocity of the pedal. Use examples to support your
answer.
MacBook Air
Transcribed Image Text:Velocity Task Introduction: The pedal of a bicycle is attached to a crank arm that revolves when the pedal is pushed by a person's foot. As the crank arm turns, it pulls a chain that is attached to the rear wheel of the bicycle, causing the bicycle to move forward. C 1 18 cm 16 cm A particular bicycle has wheels that are 66 cm in diameter. The radius of the crank arm is 18 cm. At its lowest point, the pedal is 16 cm'above the ground. A person is pedaling the bicycle such that the crank arm rotates once every second. Questions: 1. Write an equation that models the vertical position of the foot with respect to the ground, starting from the lowest point, as the crank arm turns. 2. What is the rate of change of the vertical position of the foot when it is at the midline? Explain your answer 3. How fast, in kilometres per hour, is the bicycle moving? 4. Determine an equation that would model the foot's position when the cyclist is traveling 5 km/h. Compare this equation to your equation from question 1 and explain any differences. 5. Use calculus to explain why the rotation velocity of a point on the perimeter of a wheel is the same as the velocity of the pedal. Use examples to support your answer. MacBook Air
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Angular speed, acceleration and displacement
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University