The ideal gas law describes the relationship among the pressure P, volume V, number of moles n., and absolute temperature T of an ideal gas. Here is the relationship expressed mathematically: PV = nRT where R is a proportionality constant. The units of R are determined by the units of pressure and volume used in the equation. When bar is used for pressure and I for volume, the appropriate R value is 0.08314 L bar mol-¹ K-¹ Part A How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0°C, and ideal behavior. Express your answer using three significant figures. ▸ View Available Hint(s) IVE] ΑΣΦ → O ? molecules

General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Chapter5: The Gaseous State
Section: Chapter Questions
Problem 5.127QP: A 1.000-g sample of an unknown gas at 0C gives the following data: P(atm) V (L) 0.2500 3.1908 0.5000...
icon
Related questions
Question
The ideal gas law describes the relationship among the pressure P, volume V,
number of moles n, and absolute temperature T of an ideal gas. Here is the
relationship expressed mathematically:
PV = nRT
where R is a proportionality constant. The units of R are determined by the
units of pressure and volume used in the equation. When bar used for
pressure and L for volume, the appropriate R value is
0.08314 L bar mol-¹ K-¹.
Part A
How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0 °C, and ideal behavior.
Express your answer using three significant figures.
► View Available Hint(s)
VE ΑΣΦ +
Review | Constants |
molecules
Transcribed Image Text:The ideal gas law describes the relationship among the pressure P, volume V, number of moles n, and absolute temperature T of an ideal gas. Here is the relationship expressed mathematically: PV = nRT where R is a proportionality constant. The units of R are determined by the units of pressure and volume used in the equation. When bar used for pressure and L for volume, the appropriate R value is 0.08314 L bar mol-¹ K-¹. Part A How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0 °C, and ideal behavior. Express your answer using three significant figures. ► View Available Hint(s) VE ΑΣΦ + Review | Constants | molecules
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Absorption and Adsorption
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning