Problem 4: Inputs: ● ● ● a = 1.2 m b = 0.5 m P = 50 N Table not required, but feel free to use it if you like We are going to put this system in equilibrium. We haven't talked much about equilibrium yet, but that's okay. In order for a body to be in equilibrium, we need the sum of the forces to equal zero, and the sum of the moments about any point to equal zero. A O FA P (a) Let's start by summing moments about point A. Determine the magnitude of FB such that ΣMA = 0. In other words, compute FB such that the net moment about point A is zero. (b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA required to make the net moment about point B equal zero (EMB = 0). B FB (c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the forces equals zero. (Cool right?) (d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Problem 4:
Inputs:
●
●
●
a = 1.2 m
b = 0.5 m
P = 50 N
Table not required, but feel free to use it if you like
We are going to put this system in equilibrium.
We haven't talked much about equilibrium yet,
but that's okay. In order for a body to be in
equilibrium, we need the sum of the forces to
equal zero, and the sum of the moments about
any point to equal zero.
FA
a
P
b
(a) Let's start by summing moments about point A. Determine the magnitude of FB such that >MA = 0.
In other words, compute FB such that the net moment about point A is zero.
(b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA
required to make the net moment about point B equal zero (XMB = 0).
B
FB
(c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the
forces equals zero. (Cool right?)
(d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Transcribed Image Text:Problem 4: Inputs: ● ● ● a = 1.2 m b = 0.5 m P = 50 N Table not required, but feel free to use it if you like We are going to put this system in equilibrium. We haven't talked much about equilibrium yet, but that's okay. In order for a body to be in equilibrium, we need the sum of the forces to equal zero, and the sum of the moments about any point to equal zero. FA a P b (a) Let's start by summing moments about point A. Determine the magnitude of FB such that >MA = 0. In other words, compute FB such that the net moment about point A is zero. (b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA required to make the net moment about point B equal zero (XMB = 0). B FB (c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the forces equals zero. (Cool right?) (d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Physical laws and observations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning