The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (6) The elastic potential energy the state 2 is HILAI L₂ # State 2 ZG State 1 (N-m) (two decimal places)

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter10: Virtual Work And Potential Energy
Section: Chapter Questions
Problem 10.57P: Find the stable equilibrium position of the system described in Prob. 10.56 if m = 2.06 kg.
icon
Related questions
Question
The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the
wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m.
The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the
state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls
without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's
length at the state 2 is L2=4 m.
(6) The elastic potential energy the state 2 is
HILAI
L₂
#
State 2
ZG
State 1
(N-m) (two decimal places)
Transcribed Image Text:The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (6) The elastic potential energy the state 2 is HILAI L₂ # State 2 ZG State 1 (N-m) (two decimal places)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L