- In a heat exchanger, steam of 0.08 bar and a specific steam content of 95% is condensed. 381.6 tons / h cooling water with a temperature of 10 ̊C flows in parallel connected tubers with inner / outer diameter 28/30 mm with a speed of 0.65 m / s. The heat transfer surface of the heat exchanger is 220 m2 and it has a k-value of 2200 W / (m2K) . Assume the specific heat capacity of the water 4.18 kJ / (kg K) and density 1000 kg / m3. The K-value is attributed to the outer mantle surface of the tubes.   a) Calculate the outlet temperature of cooling water. b) How many tonnes of steam per hour are condensed

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.46P
icon
Related questions
Question
100%

2- In a heat exchanger, steam of 0.08 bar and a specific steam content of 95% is condensed. 381.6 tons / h cooling water with a temperature of 10 ̊C flows in parallel connected tubers with inner / outer diameter 28/30 mm with a speed of 0.65 m / s. The heat transfer surface of the heat exchanger is 220 m2 and it has a k-value of 2200 W / (m2K) . Assume the specific heat capacity of the water 4.18 kJ / (kg K) and density 1000 kg / m3. The K-value is attributed to the outer mantle surface of the tubes.

 

  1. a) Calculate the outlet temperature of cooling water.
  2. b) How many tonnes of steam per hour are condensed?

c) Determine the number of tubes and tube length

Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning