If you shine light on a conducting metallic surface, the light can impart energy to electrons in the conductor, potentially freeing them from the surface if the energy is higher than the so-called "work function", which is the energy required to free the electron from the surface. If you place another conducting surface in a position at which it can catch these electrons, and connect these two conductors by another conductor such as a wire, you can generate a so-called photoelectric current. Suppose the work function of a particular metal is 4.8 x 10-19 J. If light can impart an energy of 14.4 x 10-19 J to each electron, what must be the potential difference of the two conducting surfaces in order to stop a photoelectric current? Which conducting surface should be at the higher potential?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter24: Electromagnetic Waves
Section: Chapter Questions
Problem 75P
icon
Related questions
icon
Concept explainers
Question

If you shine light on a conducting metallic surface, the light can impart energy to electrons in the conductor, potentially freeing them from the surface if the energy is higher than the so-called "work function", which is the energy required to free the electron from the surface. If you place another conducting surface in a position at which it can catch these electrons, and connect these two conductors by another conductor such as a wire, you can generate a so-called photoelectric current. Suppose the work function of a particular metal is 4.8 x 10-19 J. If light can impart an energy of 14.4 x 10-19 J to each electron, what must be the potential difference of the two conducting surfaces in order to stop a photoelectric current? Which conducting surface should be at the higher potential?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Particle theory of light
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning