Exoplanet orbital period (b) For the system pictured in the previous problem (and using data given there), suppose that the star has a mass of 0.025 solar masses, and the planet's mass is very small in comparison. Compute the planet's orbit period. Assume the orbit is circular with a radius given by the distance listed in the figure. Express your answer in years.

icon
Related questions
Question
Star 2M1207
distance = 55 AU
Planet 2M12076
Transcribed Image Text:Star 2M1207 distance = 55 AU Planet 2M12076
Exoplanet orbital period (b)
For the system pictured in the previous problem (and using data given there), suppose that the star
has a mass of 0.025 solar masses, and the planet's mass is very small in comparison. Compute the
planet's orbit period. Assume the orbit is circular with a radius given by the distance listed in the
figure. Express your answer in years.
[Hint: this is a mildly challenging problem that requires plugging into a single formula but using
multiple unit conversions. You will need to use Kepler's 3rd law in its **general** form (not the
simplified form that is only applicable to objects orbiting our Sun). You will need to look up the
value of the constant G. Convert solar masses to kg, AU to m, and everything else to base Sl units;
find the period in seconds; then convert seconds to years.]
Transcribed Image Text:Exoplanet orbital period (b) For the system pictured in the previous problem (and using data given there), suppose that the star has a mass of 0.025 solar masses, and the planet's mass is very small in comparison. Compute the planet's orbit period. Assume the orbit is circular with a radius given by the distance listed in the figure. Express your answer in years. [Hint: this is a mildly challenging problem that requires plugging into a single formula but using multiple unit conversions. You will need to use Kepler's 3rd law in its **general** form (not the simplified form that is only applicable to objects orbiting our Sun). You will need to look up the value of the constant G. Convert solar masses to kg, AU to m, and everything else to base Sl units; find the period in seconds; then convert seconds to years.]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer