Consider a reducer with inlet and outlet diameters of D1 and D2, respectively. The respective velocities are U1 and U2, as shown below. The fluid of density, ρ exits at an angle θ with respect to the horizontal plane. The input is along the horizontal plane. Assume no viscous effects, i.e., μ = 0. Calculate the (i) vertical, and (ii) horizontal forces to hold the reducer stationary. Consider the following: • Mass balance • Energy balance • Momentum balance in horizontal direction • Momentum balance in vertical direction

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.35P
icon
Related questions
Question

Consider a reducer with inlet and outlet diameters of D1 and D2, respectively. The respective
velocities are U1 and U2, as shown below. The fluid of density, ρ exits at an angle θ with respect
to the horizontal plane. The input is along the horizontal plane. Assume no viscous effects, i.e., μ
= 0.
Calculate the (i) vertical, and (ii) horizontal forces to hold the reducer stationary.
Consider the following:
• Mass balance
• Energy balance
• Momentum balance in horizontal direction
• Momentum balance in vertical direction 

U₁
D₁
FH
Fv
D
U₂
Transcribed Image Text:U₁ D₁ FH Fv D U₂
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Where is the Energy Balance?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning