Consider a person standing in a roomn at 20°C with an exposed surface area of 1.5 m2. The deep body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near the skin is about 0.3 W/m-°C. The body is losing heat at a rate of 150 W by natural convection and radiation to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C, determine the skin temperature of the person. °C

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.19P: 1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the...
icon
Related questions
Question
Consider a person standing in a roomn at 20°C with an exposed surface area of 1.5 m2. The deep
body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near
the skin is about 0.3 W/m-°C. The body is losing heat at a rate of 150 W by natural convection and
radiation to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C,
determine the skin temperature of the person.
°C
Transcribed Image Text:Consider a person standing in a roomn at 20°C with an exposed surface area of 1.5 m2. The deep body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near the skin is about 0.3 W/m-°C. The body is losing heat at a rate of 150 W by natural convection and radiation to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C, determine the skin temperature of the person. °C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning