An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. Your answer is correct. V₂ = 26.192 Hint Step 2 * Your answer is incorrect. || Determine the power required for the pump, in hp. ft/s i 1.4961 hp Attempts: 1 of 4 used

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter2: The Kinetic Theory Of Gases
Section: Chapter Questions
Problem 94CP: An airtight dispenser for drinking water is 25 cm × 10 cm in horizontal dimensions and 20 cm tall....
icon
Related questions
Question
An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled
as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant
elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its
surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump.
Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.
Step 1
Determine the velocity of the oil at the exit of the pump, in ft/s.
Your answer is correct.
V₂ = 26.192
Hint
Step 2
* Your answer is incorrect.
W₁ =
in
ft/s
Determine the power required for the pump, in hp.
1.4961
hp
Attempts: 1 of 4 used
Transcribed Image Text:An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. Your answer is correct. V₂ = 26.192 Hint Step 2 * Your answer is incorrect. W₁ = in ft/s Determine the power required for the pump, in hp. 1.4961 hp Attempts: 1 of 4 used
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Kinetic theory of gas
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University