An Erbium-166 nucleus contains 68 protons. The atomic mass of a neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In this question you may use that the mass of a proton is 938.27 MeV/c², the mass of a neutron is 939.57 MeV/e² and the mass of an electron is 0.511 MeV/c². i. Calculate the nuclear binding energy per nucleon, giving your answer in units of MeV. ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus. Estimate the scattering angle of the first minimum in the resulting diffraction pattern. iii. Briefly comment on whether or not you expect this nucleus to be spherical, and what consequence this has for excited states of the nucleus in the collective model.

icon
Related questions
Question
An Erbium-166 nucleus contains 68 protons. The atomic mass of a
neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In
this question you may use that the mass of a proton is 938.27 MeV/c²,
the mass of a neutron is 939.57 MeV/e² and the mass of an electron
is 0.511 MeV/c².
i. Calculate the nuclear binding energy per nucleon, giving your
answer in units of MeV.
ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus.
Estimate the scattering angle of the first minimum in the resulting
diffraction pattern.
iii. Briefly comment on whether or not you expect this nucleus to be
spherical, and what consequence this has for excited states of
the nucleus in the collective model.
Transcribed Image Text:An Erbium-166 nucleus contains 68 protons. The atomic mass of a neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In this question you may use that the mass of a proton is 938.27 MeV/c², the mass of a neutron is 939.57 MeV/e² and the mass of an electron is 0.511 MeV/c². i. Calculate the nuclear binding energy per nucleon, giving your answer in units of MeV. ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus. Estimate the scattering angle of the first minimum in the resulting diffraction pattern. iii. Briefly comment on whether or not you expect this nucleus to be spherical, and what consequence this has for excited states of the nucleus in the collective model.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer