A tank in the form of a right-circular cylinder of radius 0.4 m and height 3 m is standing on end. When water leaks through a hole, friction and contraction of the stream near the hole reduce the volume of the water leaving the tank per second to cA√2gh. If the tank is initially full of water, and water leaks from a circular hole of radius 17.5 mm at its bottom, determine a differential equation for the height h of the water at time t. Ignore friction and contraction of water at the hole, that is let c = 1. (Assume the acceleration due to gravity g is 9.8 m/s2. Round your numeric value to five decimal places.) 8.47392-10-3√h dh dt = eBook X

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter14: Fluid Mechanics
Section: Chapter Questions
Problem 115AP: A sump pump (used to drain water from be basement of houses built below the water table) is draining...
icon
Related questions
icon
Concept explainers
Topic Video
Question
A tank in the form of a right-circular cylinder of radius 0.4 m and height 3 m is standing on end. When water leaks through a hole, friction and contraction of the stream near
the hole reduce the volume of the water leaving the tank per second to CA,√2gh. If the tank is initially full of water, and water leaks from a circular hole of radius 17.5 mm
at its bottom, determine a differential equation for the height h of the water at time t. Ignore friction and contraction of water at the hole, that is let c = 1. (Assume the
acceleration due to gravity g is 9.8 m/s². Round your numeric value to five decimal places.)
dh
dt
=
eBook
-3
8.47392 10 3 √h
Transcribed Image Text:A tank in the form of a right-circular cylinder of radius 0.4 m and height 3 m is standing on end. When water leaks through a hole, friction and contraction of the stream near the hole reduce the volume of the water leaving the tank per second to CA,√2gh. If the tank is initially full of water, and water leaks from a circular hole of radius 17.5 mm at its bottom, determine a differential equation for the height h of the water at time t. Ignore friction and contraction of water at the hole, that is let c = 1. (Assume the acceleration due to gravity g is 9.8 m/s². Round your numeric value to five decimal places.) dh dt = eBook -3 8.47392 10 3 √h
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning