A steel plate having a thickness of 100 mm is suddenly exposed to a hot gas at 1000 oC in a furnace. One surface of the plate is heated while the other surface of the plate can be approximated to be adiabatic. The initial temperature of the steel plate is 20 oC. The thermal conductivity and thermal diffusivity of the steel plate are 34.8 W/m K and 0.555 x 10-5 m2/s respectively. The convective heat-transfer coefficient is 174 W/m2 K.  (The pictures are the conduction charts given) a) Find the time necessary to raise the surface temperature of the steel plate to 500 oC.  b) Find the maximum temperature difference in the cross-section of the steel plate at the time evaluated in part a).  c) Determine the heat energy transferred to the steel plate per unit wall surface area by the time evaluated in part a).

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter1: Heat, Temperature, And Pressure
Section: Chapter Questions
Problem 17RQ: Convert 22C to Fahrenheit.
icon
Related questions
Question

I need help on solving this question:

A steel plate having a thickness of 100 mm is suddenly exposed to a hot gas at 1000 oC in
a furnace. One surface of the plate is heated while the other surface of the plate can be
approximated to be adiabatic. The initial temperature of the steel plate is 20 oC. The thermal
conductivity and thermal diffusivity of the steel plate are 34.8 W/m K and 0.555 x 10-5 m2/s
respectively. The convective heat-transfer coefficient is 174 W/m2 K. 

(The pictures are the conduction charts given)

a) Find the time necessary to raise the surface temperature of the steel plate to 500 oC. 

b) Find the maximum temperature difference in the cross-section of the steel plate at the time evaluated in part a). 

c) Determine the heat energy transferred to the steel plate per unit wall surface area by the time evaluated in part a). 

1.0
0.7
T(0,1)-T, 0.5
04
0.3
T-T,
0.2
0.1
0.07
0.05
0.04
0.03
0.02
1.0
0.9
0.8
(0) 0.7
0.6
0.5
0.4
0.3
0.2
0.01
0.007
0005
0.004
0.000
0.000
0.001
T(xt)-T, 1.0
T(0,1)-7 0.9
0.8
0.7
0.6
0
0.1
0
10-5
0.1
1
Bi=
0.4
0.5
0.6
0.5 0.7
0.4 0.8
0.3
0.2
2
x/L=0.2
0
0.01
SE
Tit
HIND
0.9
1.0
al
k
0.1
3
Bi
4 8 12 16 20 24 28 40 60 80
Bi=
al
k
1.0 101 100
7 Bi
10-4 10-3 10-2 10-1
J
1
10
Bi=
G
aL
100 120 140 200 300 400 500 600
Foutk/pcl²
102
103
Bi Fo=1² kpc
Figure 1 - Dimensionless Transient Temperatures and Heat Transfer for an Infinite Slab
104
1.0
0.7
0.5
0.4
T(0,1)-T, 03
T-T, 02
0.1
0.07
0.05
0.04
0.03
0.02
0.01
0.007
0.005
0.004
0.003
0.002
0.001
0.5
0.4
0
1.0
T(r.)-T 0.9
T(0,1)-T, 0.8 0.4
0.7 0.5
0.6 0.6.
r/R=0.2
0.3
0.2 0.9-
0.1
1.0
a) 0.9
(1)
(0) 0.8
0.7
0.6
0.5
0.4
0.7
0.8
0
0.01
4
1.0
12
0.1
aR
Bi==
k
f
65
1206557
3 4 8 12 16 20
1.0
Bi=
aR
10
0.3
0.2
0.1
0
10-5 10-4 10-3 10-2
Bi
100
Bi
24 28 40
1
Bi=
10
60 80 100 120 140 200 300
Fo=tk
tk/pcR²
10-1
Bi³ Fo=to/kpc
Figure 2 - Dimensionless Transient Temperatures and Heat Transfer for a Long Cylinder
aR
all
k
102 103
104
Transcribed Image Text:1.0 0.7 T(0,1)-T, 0.5 04 0.3 T-T, 0.2 0.1 0.07 0.05 0.04 0.03 0.02 1.0 0.9 0.8 (0) 0.7 0.6 0.5 0.4 0.3 0.2 0.01 0.007 0005 0.004 0.000 0.000 0.001 T(xt)-T, 1.0 T(0,1)-7 0.9 0.8 0.7 0.6 0 0.1 0 10-5 0.1 1 Bi= 0.4 0.5 0.6 0.5 0.7 0.4 0.8 0.3 0.2 2 x/L=0.2 0 0.01 SE Tit HIND 0.9 1.0 al k 0.1 3 Bi 4 8 12 16 20 24 28 40 60 80 Bi= al k 1.0 101 100 7 Bi 10-4 10-3 10-2 10-1 J 1 10 Bi= G aL 100 120 140 200 300 400 500 600 Foutk/pcl² 102 103 Bi Fo=1² kpc Figure 1 - Dimensionless Transient Temperatures and Heat Transfer for an Infinite Slab 104 1.0 0.7 0.5 0.4 T(0,1)-T, 03 T-T, 02 0.1 0.07 0.05 0.04 0.03 0.02 0.01 0.007 0.005 0.004 0.003 0.002 0.001 0.5 0.4 0 1.0 T(r.)-T 0.9 T(0,1)-T, 0.8 0.4 0.7 0.5 0.6 0.6. r/R=0.2 0.3 0.2 0.9- 0.1 1.0 a) 0.9 (1) (0) 0.8 0.7 0.6 0.5 0.4 0.7 0.8 0 0.01 4 1.0 12 0.1 aR Bi== k f 65 1206557 3 4 8 12 16 20 1.0 Bi= aR 10 0.3 0.2 0.1 0 10-5 10-4 10-3 10-2 Bi 100 Bi 24 28 40 1 Bi= 10 60 80 100 120 140 200 300 Fo=tk tk/pcR² 10-1 Bi³ Fo=to/kpc Figure 2 - Dimensionless Transient Temperatures and Heat Transfer for a Long Cylinder aR all k 102 103 104
1.0
0.7
0.5
0.4
T(0,1)-T, 03
0.2
T-T,
0.01
0.007
0.005
0.004
0.003
0.002
0.8
0.7
0.6
0.1
0.07
0.05
0.04
0.03
0.02
0.001
1.0
20.9
O(0)
1.0
T(r.1)-T, 0.9
T(0,1)-T, 0.8 0.4
0.7 0.5
0.6
0.5
0.4
0
0.5 1.0 1.5
r/R=0.2
0.6
0.7
0.3 0.8
0.2 0.9
0.1
0.5
0.4
0.3
0.2
0.1
0
10-5
1.0
0
0.01
Bi =
aR
k
0.1
10-4
2.0
2.5
Bi = 0.001
0.002
0.005
0.01-
10-3
1.0
0.02-
3 4 5 6 7 8 9 10
Bi
Bi
0.05-
0.1
10-2
10 Bi 100
10-1
ולי
30
40
10
70
110
Bi=
Fo-tk
102
aR
k
130 170
***
PCR²
210 250
103
104
Bi² Fo=to²/kpc
Figure 3 - Dimensionless Transient Temperatures and Heat Transfer for a Sphere
Transcribed Image Text:1.0 0.7 0.5 0.4 T(0,1)-T, 03 0.2 T-T, 0.01 0.007 0.005 0.004 0.003 0.002 0.8 0.7 0.6 0.1 0.07 0.05 0.04 0.03 0.02 0.001 1.0 20.9 O(0) 1.0 T(r.1)-T, 0.9 T(0,1)-T, 0.8 0.4 0.7 0.5 0.6 0.5 0.4 0 0.5 1.0 1.5 r/R=0.2 0.6 0.7 0.3 0.8 0.2 0.9 0.1 0.5 0.4 0.3 0.2 0.1 0 10-5 1.0 0 0.01 Bi = aR k 0.1 10-4 2.0 2.5 Bi = 0.001 0.002 0.005 0.01- 10-3 1.0 0.02- 3 4 5 6 7 8 9 10 Bi Bi 0.05- 0.1 10-2 10 Bi 100 10-1 ולי 30 40 10 70 110 Bi= Fo-tk 102 aR k 130 170 *** PCR² 210 250 103 104 Bi² Fo=to²/kpc Figure 3 - Dimensionless Transient Temperatures and Heat Transfer for a Sphere
Expert Solution
steps

Step by step

Solved in 4 steps with 7 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning