4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs-¹ at one end and air at a rate of 5 x 10-4 kgs-¹ in the same direction. The density of water is 1000 kgm 3, and the density of air is 1.2 kgm 3. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs-1, 61.1 kgm-3, 0.94, 0.822 ms-¹, 0.051 ms-¹

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
4. An experimental test rig is used to examine two-phase flow regimes
in horizontal pipelines. A particular experiment involved uses air
and water at a temperature of 25°C, which flow through a horizontal
glass tube with an internal diameter of 25.4 mm and a length of 40 m.
Water is admitted at a controlled rate of 0.026 kgs-¹ at one end and air
at a rate of 5 x 10-4 kgs-¹ in the same direction. The density of water
is 1000 kgm 3, and the density of air is 1.2 kgm ³. Determine the mass
flow rate, the mean density, gas void fraction, and the superficial
velocities of the air and water. Answer: 0.02605 kgs-1, 61.1 kgm ³, 0.94,
0.822 ms-1, 0.051 ms-1
Transcribed Image Text:4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs-¹ at one end and air at a rate of 5 x 10-4 kgs-¹ in the same direction. The density of water is 1000 kgm 3, and the density of air is 1.2 kgm ³. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs-1, 61.1 kgm ³, 0.94, 0.822 ms-1, 0.051 ms-1
Expert Solution
steps

Step by step

Solved in 4 steps with 21 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The