The figure on the left, below, shows a non-uniform bent rod with a mass of 5 kg. Your job is to determine the location of the center of gravity of this rod. You design an experiment: you connect a pin and cable to the rod such that it safely stays in static equilibrium under a force P that you apply. Then, you apply forces between 0-100 N, and measure the tension force on the cable using a cable tension meter. The results of your experiment are shown in the figure, on the right. Using this experiment, calculate (approximately) the horizontal distance (x in the figure) between point A and the center of gravity G of the bent rod. B A x 20 cm O 20 cm 60° D 50 cm Tension measurement [N] 60 50 Z 40 30 20 10 -10 ● real data estimated fit 10 20 30 40 m 50 P[N] 60 70 80 90 100

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter10: Virtual Work And Potential Energy
Section: Chapter Questions
Problem 10.62P: The bar ABC is supported by three identical, ideal springs. Note that the springs are always...
icon
Related questions
Question
The figure on the left, below, shows a non-uniform bent rod with a mass of 5 kg. Your job
is to determine the location of the center of gravity of this rod. You design an experiment:
you connect a pin and cable to the rod such that it safely stays in static equilibrium under
a force P that you apply. Then, you apply forces between 0-100 N, and measure the tension
force on the cable using a cable tension meter. The results of your experiment are shown
in the figure, on the right. Using this experiment, calculate (approximately) the horizontal
distance (x in the figure) between point A and the center of gravity G of the bent rod.
B
C
O
I
20 cm
20 cm
60°
D
50 cm
Tension measurement [N]
60
50
40
30
20
-10
0
10
real data
estimated fit
20
30
40
ܐܐܝ
50
P[N]
60
70
80
90
100
Transcribed Image Text:The figure on the left, below, shows a non-uniform bent rod with a mass of 5 kg. Your job is to determine the location of the center of gravity of this rod. You design an experiment: you connect a pin and cable to the rod such that it safely stays in static equilibrium under a force P that you apply. Then, you apply forces between 0-100 N, and measure the tension force on the cable using a cable tension meter. The results of your experiment are shown in the figure, on the right. Using this experiment, calculate (approximately) the horizontal distance (x in the figure) between point A and the center of gravity G of the bent rod. B C O I 20 cm 20 cm 60° D 50 cm Tension measurement [N] 60 50 40 30 20 -10 0 10 real data estimated fit 20 30 40 ܐܐܝ 50 P[N] 60 70 80 90 100
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L